Phosphoinositide-specific phospholipase C (PLC) is involved in Ca²⁺ mediated signalling events that lead to altered cellular status. Using various sequence-analysis methods, we identified two conserved motifs in known PLC sequences. The identified motifs are located in the C2 domain of plant PLCs and are not found in any other protein. These motifs are specifically found in the Ca²⁺ binding loops and form adjoining beta strands. Further, we identified certain conserved residues that are highly distinct from corresponding residues of animal PLCs. The motifs reported here could be used to annotate plant-specific phospholipase C sequences. Furthermore, we demonstrated that the C2 domain alone is capable of targeting PLC to the membrane in response to a Ca²⁺ signal. We also showed that the binding event results from a change in the hydrophobicity of the C2 domain upon Ca²⁺ binding. Bioinformatic analyses revealed that all PLCs from Arabidopsis and rice lack a transmembrane domain, myristoylation and GPI-anchor protein modifications. Our bioinformatic study indicates that plant PLCs are located in the cytoplasm, the nucleus and the mitochondria. Our results suggest that there are no distinct isoforms of plant PLCs, as have been proposed to exist in the soluble and membrane associated fractions. The same isoform could potentially be present in both subcellular fractions, depending on the calcium level of the cytosol. Overall, these data suggest that the C2 domain of PLC plays a vital role in calcium signalling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-011-9862-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!