Hypothalamic Ahi1 mediates feeding behavior through interaction with 5-HT2C receptor.

J Biol Chem

CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.

Published: January 2012

AI Article Synopsis

  • The study identifies Ahi1 protein as a key player in regulating feeding behavior by interacting with the serotonin receptor 2C (5-HT(2C)R), which is crucial for appetite control.
  • Ahi1 promotes the degradation of 5-HT(2C)R and shows altered expression during fasting; increased Ahi1 levels lead to decreased 5-HT(2C)R levels.
  • Knockdown of Ahi1 results in increased 5-HT(2C)R expression and reduced food intake, indicating Ahi1’s role in modulating serotonin signaling associated with feeding behavior.*

Article Abstract

It is indicated that there are important molecules interacting with brain nervous systems to regulate feeding and energy balance by influencing the signaling pathways of these systems, but relatively few of the critical players have been identified. In the present study, we provide the evidence for the role of Abelson helper integration site 1 (Ahi1) protein as a mediator of feeding behavior through interaction with serotonin receptor 2C (5-HT(2C)R), known for its critical role in feeding and appetite control. First, we demonstrated the co-localization and interaction between hypothalamic Ahi1 and 5-HT(2C)R. Ahi1 promoted the degradation of 5-HT(2C)R through the lysosomal pathway. Then, we investigated the effects of fasting on the expression of hypothalamic Ahi1 and 5-HT(2C)R. Fasting resulted in an increased Ahi1 expression and a concomitant decreased expression of 5-HT(2C)R. Knockdown of hypothalamic Ahi1 led to a concomitant increased expression of 5-HT(2C)R and a decrease of food intake and body weight. Last, we found that Ahi1 could regulate the expression of neuropeptide Y and proopiomelanocortin. Taken together, our results indicate that Ahi1 mediates feeding behavior by interacting with 5-HT(2C)R to modulate the serotonin signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265901PMC
http://dx.doi.org/10.1074/jbc.M111.277871DOI Listing

Publication Analysis

Top Keywords

hypothalamic ahi1
16
feeding behavior
12
ahi1 mediates
8
mediates feeding
8
behavior interaction
8
ahi1
8
ahi1 5-ht2cr
8
expression 5-ht2cr
8
5-ht2cr
7
feeding
5

Similar Publications

Accumulating research shows that prenatal exposure to maternal stress increases the risk of behavioral and mental health problems for offspring later in life. However, how prenatal stress affects offspring behavior remains unknown. Here, we found that prenatal stress (PNS) leads to reduced Ahi1, decreased synaptic plasticity and cognitive impairment in offspring.

View Article and Find Full Text PDF

Background: The incidence of sleep disorders in children with autism spectrum disorder (ASD) is very high. Sleep disorders can exacerbate the development of ASD and impose a heavy burden on families and society. The pathological mechanism of sleep disorders in autism is complex, but gene mutations and neural abnormalities may be involved.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is one of the leading forms of psychiatric disorders, characterized by aversion to mobility, neurotransmitter deficiency, and energy metabolic decline. Low-level laser therapy (LLLT) has been investigated in a variety of neurodegenerative disorders associated with mitochondrial dysfunction and functional impairments. The goal of this study was to examine the effect of LLLT on depression-like behaviors and to explore the potential mechanism by detecting mitochondrial function following LLLT.

View Article and Find Full Text PDF

The Abelson helper integration site 1 (AHI1) gene has a pivotal role in brain development. Studies by our group and others have demonstrated association of AHI1 with schizophrenia and autism. To elucidate the mechanism whereby alteration in AHI1 expression may be implicated in the pathogenesis of neuropsychiatric disorders, we studied Ahi1 heterozygous knockout (Ahi1(+/-)) mice.

View Article and Find Full Text PDF

Mutations in the Abelson helper integration site-1 (AHI1) gene result in N-terminal Ahi1 fragments and cause Joubert syndrome, an autosomal recessive brain malformation disorder associated with delayed development. How AHI1 mutations lead to delayed development remains unclear. Here we report that full-length, but not N-terminal, Ahi1 binds Hap1, a huntingtin-associated protein that is essential for the postnatal survival of mice and that this binding is regulated during neuronal differentiation by nerve growth factor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!