Pure methanol, which is required as an inducer of the AOX1 promoter and a carbon/energy source in processes for recombinant protein production by Pichia pastoris, is impracticable and therefore generally undesirable. As an alternative, a procedure using double carbon substrate was examined (11.7g(carbon)l(-1), 60%/40% carbon from glucose/methanol). The effects on methanol metabolism, extracellular formation of porcine trypsinogen, biomass growth and cell viability were analyzed. In contrast to batch cultures, where the glucose and methanol were utilized sequentially, in carbon/energy-limited continuous cultures (operated between dilution rates 0.03 and 0.20h(-1)) the repressive effect of glucose on methanol utilization was eliminated up to 0.15h(-1) (ca. 130% of μ(max) with methanol). With the mixture, the yield of biomass (1.54±0.12) g(CDW)g(carbon)(-1) was found to be 1.4 times larger than the yield with methanol alone. Despite the current widespread view that glucose has a repressive effect on the AOX1 promoter, the product was synthesized over the entire range of dilution rates, with maximum productivities of (0.70±0.12)mgg(CDW)(-1) h(-1) at 0.07h(-1). Thus, glucose was shown to be a feasible partial substitute for methanol in recombinant protein production by P. pastoris Mut(+) strain while enhancing process productivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2011.10.010 | DOI Listing |
Biomolecules
November 2024
Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria.
Pyranose oxidase (POx) is an FAD-dependent oxidoreductase and belongs to the glucose-methanol-choline (GMC) superfamily of oxidoreductases. As recently reported, POxs and FAD-dependent -glycoside oxidases (CGOxs) share the same sequence space, and phylogenetic analysis of actinobacterial sequences belonging to this shared sequence space showed that it can be divided into four clades. Here, we report the biochemical characterization of a POx/CGOx from sp.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina.
In this work, a decoction (DOe) and a methanolic global extract (MGEOe), obtained with the aerial parts of Gillies ex Hooker et Arnott (Oxalidaceae), were evaluated. The high-resolution liquid chromatography in conjunction with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS) analysis showed forty compounds in MGEOe and twenty-nine in DOe, including flavones, C-glycosyl flavones, isoflavones, fatty acids, terpenes, phenolic acids, and sterols. The antioxidant properties were evaluated by DPPH, TEAC, FRAP, and ILP assays.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Anna University, Chennai, 600 025, India.
Sci Rep
January 2025
Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
To illustrate the anti-diabetic properties of Berberis orthobotrys seeds was the aim of the current study. After a series of experiments, two doses of aqueous methanolic extract of the seeds were selected i.e.
View Article and Find Full Text PDFJ Mol Histol
December 2024
Complementary and Integrative Medicine, Department of Traditional, Ankara Yıldırım Beyazıt University, Ankara, Türkiye, Turkey.
It is crucial to investigate new anti-diabetic agents and therapeutic approaches targeting molecules in potential signaling pathways for the treatment of Type 2 diabetes mellitus (T2DM). The objective of the study was to investigate the total phenolic content, antioxidant capacity, α-glucosidase, and α-amylase inhibitory activities of Bolanthus turcicus (B. turcicus), as well as their cytotoxic, anti-adipogenic, anti-diabetic, apoptotic, and anti-migration potential on adipocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!