Complexation accompanied by denaturation of protein with synthetic carboxylic acid receptors was investigated, to evaluate the key factors for recognition of proteins. The synthetic receptors used were tetraphenylporphyrin (TPP) derivatives and receptors bearing multiple (2-8) carboxylic acid groups. The complexation behavior was quantified from the absorption in the far UV CD spectrum attributed to the secondary structure of the protein. TPP derivatives bearing multiple carboxylic acid groups in the side chains exhibited higher affinity than other receptors that were smaller and had fewer carboxylic acid groups. As the degree of complexation was influenced by the pH and ionic strength in aqueous solution, electrostatic interaction was one of the most important factors for the recognition of proteins. Complexation was also estimated by observation of fluorescence quenching of the TPP derivatives. The stoichiometry of the complexes between lysozyme and the porphyrins was investigated by quantitative analysis of the denaturation using CD spectra. From the results of Job plots and slope analysis for the amount of denatured protein, formation of 1:1 complexes was confirmed. The equilibrium association constants (K(ass)) for lysozyme and the TPP receptors ranged from 0.6×10(6) to 1.1×10(6)M(-1). The lytic activity of lysozyme was partially lost in the presence of anionic TPP derivatives, due to complexation and denaturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2011.10.034 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405.
Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602.
is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.
View Article and Find Full Text PDFPLoS One
January 2025
US Department of Veterans Affairs, Palo Alto Healthcare System, National Center for Collaborative Healthcare Innovation, Palo Alto, California, United States of America.
Background: The intrauterine device (IUD) is a highly effective form of long-acting reversible contraception, widely recognized for its convenience and efficacy. Despite its benefits, many patients report moderate to severe pain during and after their IUD insertion procedure. Furthermore, reports suggest significant variability in pain control medications, including no adequate pain medication.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Molecular Science, University of Valencia, c/Catedrático José Beltrán Martínez 2, Paterna, 46980, Valencia, Spain.
Energy transfer processes in nanohybrids are at the focal point of conceptualizing, designing, and realizing novel energy-harvesting systems featuring nanocrystals that absorb photons and transfer their energy unidirectionally to surface-immobilized functional dyes. Importantly, the functionality of these dyes defines the ultimate application. Herein, CsPbBr perovskite nanocrystals (NCs) are interfaced with zinc phthalocyanine (ZnPc) dyes featuring carboxylic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!