Plant Zn/Cd/Pb/Co P1B-ATPases (HMAs) play different roles, among which are the control of metal transport from the roots to the shoot and/or from the cytoplasm into the cell vacuole. Transferring the knowledge acquired on HMAs from model species to HMAs from other species requires one to identify orthologues in these other species. Through an extensive screening of the public sequence databases, 96 plant P1B-ATPases showing orthology to any of the AtHMA1, AtHMA2, AtHMA3 or AtHMA4 isoforms were identified from 32 plant species belonging to 15 botanical families. The number of paralogues within a species varied greatly from species to species, even within a specific botanical family, suggesting that gene duplication events occurred after speciation. The phylogenetic tree gathering the Zn/Cd/Pb/Co P1B-ATPases was strongly structured according to the botanical family to which the sequences could be related to. In particular, no strict orthology relationship links the Brassicaceae HMAs to the non-Brassicaceae or the Poaceae ones. Recent data showed that the sole rice HMA characterised to date displays different functional properties from the Arabidopsis HMAs. Altogether, data suggest that it might be risky to directly transfer the knowledge acquired through the study of HMAs in model plant species to HMAs from other species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.crvi.2011.09.004DOI Listing

Publication Analysis

Top Keywords

zn/cd/pb/co p1b-atpases
12
species
9
phylogenetic tree
8
tree gathering
8
plant zn/cd/pb/co
8
structured botanical
8
botanical families
8
knowledge acquired
8
hmas model
8
species hmas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!