A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amorphous tungstate precursor route to nanostructured tungsten oxide film with electrochromic property. | LitMetric

Amorphous tungstate precursor route to nanostructured tungsten oxide film with electrochromic property.

J Nanosci Nanotechnol

Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.

Published: July 2011

Electrochromic tungsten oxide (WO3) films on ITO glass were fabricated by spin-coating with a tungsten peroxy acid solution, which was prepared by adding an equivolume mixture of hydrogen peroxide and glacial acetic acid to tungsten metal powder. The structural evolution of the tungstate precursor upon heat treatment was studied by X-ray diffraction (XRD) and X-ray absorption near edge structure (XANES) analyses, which indicated that the as-synthesized tungstate transformed into nanocrystalline WO3 upon heating. It is, therefore, quite clear that as-synthesized tungstate can be a good precursor for electrochromic WO3 films. A series of WO3 thin films were prepared on ITO glass by spin-coating with different concentrations of tungsten peroxy acid solution and then post-annealing at various temperatures. Depending on the concentration of the tungstate coating solution (200-500 mg mL(-1)) and the annealing temperature (100-300 degrees C), the thickness and WO3 content as well as the electrochromic properties of WO3 films can be controlled. As a result, the optimum fabrication conditions were determined to be a tungstate solution concentration of 300-400 mg mL(-1) and a post-annealing temperature of 200 degrees C. Finally, an inorganic-inorganic hybrid electrochromic device (ECD) composed of optimized WO3 and Prussian Blue (PB) with desirable coloration efficiency was successfully developed.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.4354DOI Listing

Publication Analysis

Top Keywords

wo3 films
12
tungstate precursor
8
tungsten oxide
8
ito glass
8
tungsten peroxy
8
peroxy acid
8
acid solution
8
as-synthesized tungstate
8
wo3
7
tungsten
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!