The vienna-type differential mobility analyzer (DMA) was developed for the measurement of wide-range nm-sized particles under low-pressure conditions (2.9-8 kPa) with the faraday cup electrometer (FCE). The length, inner and outer diameter of DMA are calculated as a function of flow rate, applied voltage, pressure, and particle diameter to avoide breakdown in DMA. The algorithm for the diffusion transfer function of the DMA was successfully developed and verified by comparing the numerical and experimental results. The DMA was calibrated via the tandem DMA (TDMA) method which using two DMA in parallel. The inversion algorithm was applied to the size distribution obtained from the current of the FCE. The calibration experiment was performed with 1% NaCl particles under atmospheric and low-pressure conditions. The calibration result showed that the development of the DMA was successful as it was able to measure 20- to 80-nm paricles under low-pressure conditions with various flow rates (0.1-0.5 l/min).

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.4365DOI Listing

Publication Analysis

Top Keywords

low-pressure conditions
12
differential mobility
8
mobility analyzer
8
dma
8
dma developed
8
development calibration
4
calibration differential
4
analyzer particles
4
particles low
4
low pressure
4

Similar Publications

Highly deformable flapping membrane wings suppress the leading edge vortex in hover to perform better.

Proc Natl Acad Sci U S A

February 2025

École polytechnique fédérale de Lausanne, School of Engineering, Institute of Mechanical Engineering, Unsteady Flow Diagnostics Laboratory, Lausanne 1015, Switzerland.

Airborne insects generate a leading edge vortex when they flap their wings. This coherent vortex is a low-pressure region that enhances the lift of flapping wings compared to fixed wings. Insect wings are thin membranes strengthened by a system of veins that does not allow large wing deformations.

View Article and Find Full Text PDF

This study compared the effects of seed treatment with low-pressure cold plasma (CP) and atmospheric dielectric barrier discharge (DBD) plasma on morpho-biochemical traits in Bertoni plants cultivated by two methods: in soil and aeroponics. We investigated the impact of the treatments on the germination, plant growth, and content of secondary metabolites, namely steviol glycosides (SGs), rebaudioside A (RebA), and stevioside (Stev), as well as phenolic compounds and flavonoids. Seeds were treated for 2, 5, and 7 min with CP or DBD and 5 min with vacuum six days before sowing.

View Article and Find Full Text PDF

Resilience of to Simulated Atmospheric Gas Compositions of Mars, Jupiter, and Titan.

Life (Basel)

January 2025

Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece.

This study investigates the resilience of the unicellular green microalga to extreme atmospheric conditions simulating those of Mars, Jupiter, and Titan. Using Earth as a control, experiments were conducted under autotrophic and mixotrophic conditions to evaluate the organism's photosynthetic efficiency, oxygen production, and biomass growth over 2, 5, and 12 days. Photosynthetic performance was analyzed through chlorophyll a fluorescence induction (JIP-test), metabolic activity via gas chromatography, and biomass accumulation measurements.

View Article and Find Full Text PDF

Growth of Hexagonal Boron Nitride from Molten Nickel Solutions: A Reactive Molecular Dynamics Study.

ACS Appl Mater Interfaces

January 2025

Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States.

Metal flux methods are excellent for synthesizing high-quality hexagonal boron nitride (hBN) crystals, but the atomic mechanisms of hBN nucleation and growth in these systems are poorly understood and difficult to probe experimentally. Here, we harness classical reactive molecular dynamics (ReaxFF) to unravel the mechanisms of hBN synthesis from liquid nickel solvent over time scales up to 30 ns. These simulations mimic experimental conditions by including relatively large liquid nickel slabs containing dissolved boron and a molecular nitrogen gas phase.

View Article and Find Full Text PDF

The effectiveness of high-carbohydrate diets (HCD) on cognitive impairment is still being debated. To clarify the impact of HCD on the cognitive behavior of mice under low-pressure hypoxic conditions, we studied 24 mice in different environments while subjecting them to dietary intervention for 5 weeks, and conducting behavioral tests. Under low-pressure hypoxic conditions, HCD intervention reversed the decline in spatial learning and memory abilities in mice caused by hypoxia, ameliorated pathological brain damage, and restored the integrity of the intestinal mucosa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!