Defective carbon nanotubes with stone-wales defect arrays.

J Nanosci Nanotechnol

Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea.

Published: July 2011

Presented herein are the structural and electronic properties of defective (n, n) carbon nanotubes (CNTs) (n = 3, 4, 5, 6) and of a defective graphene sheet, obtained form first-principles calculations of their electronic band strucutres. CNTs are newly discovered nanostructures with promising electronic and structural properties desired for nanoscale device applications. To enhance their functionality, various methods, such as ion implantation and ion irradiation, have been suggested for the manipulation of single-wall CNTs (SWNTs). In this study, periodic Stone-Wales defect arrays were considered. Defective (n, n) CNTs and a defective graphene sheet were analyzed in terms of their geometries and defect formation energies. In particular, the defective (5, 5) CNT was compared with the C60 fullerene and the perfect (5, 5) CNT in polygon structures and total energies. The electronic band structures via first-principles calculations were also analyzed. A significant difference was found between the electronic band structures determined via first-principles calculations and those determined with the use of a one-parameter tight-binding model.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.4465DOI Listing

Publication Analysis

Top Keywords

first-principles calculations
12
electronic band
12
defective carbon
8
carbon nanotubes
8
stone-wales defect
8
defect arrays
8
cnts defective
8
defective graphene
8
graphene sheet
8
band structures
8

Similar Publications

Insight into photocatalytic CO reduction on TiO-supported Cu nanorods: a DFT study on the reaction mechanism and selectivity.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

Photoreduction of CO into hydrocarbons is a potential strategy for reducing atmospheric CO and effectively utilizing carbon resources. Cu-deposited TiO photocatalysts stand out in this area due to their good photocatalytic activity and potential methanol selectivity. However, the underlying mechanism and factors controlling product selectivity remain less understood.

View Article and Find Full Text PDF

In the study of GaN/AlGaN heterostructure thermal transport, the interference of strain on carriers cannot be ignored. Although existing research has mainly focused on the intrinsic electronic and phonon behavior of the materials, there is a lack of studies on the transport characteristics of the electron-phonon coupling in heterostructures under strain control. This research comprehensively applies first-principles calculations and the Boltzmann transport equation simulation method to deeply analyze the thermal transport mechanism of the GaN/AlGaN heterojunction considering in-plane strain, with particular attention to the regulatory role of electron-phonon coupling on thermal transport.

View Article and Find Full Text PDF

The tunable electronic band structure of a AlP/CsBiICl van der Waals heterostructure induced by an electric field: a first-principles study.

Phys Chem Chem Phys

January 2025

Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communications, School of Physics and Electronics Science, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China.

Constructing van der Waals heterostructures (vdWHs) has emerged as an attractive strategy to combine and enhance the optoelectronic properties of stacked materials. Herein, by means of first-principles calculations, we investigate the geometric and electronic structures of the AlP/CsBiICl vdWH as well as its tunable band structure an external electric field. The AlP/CsBiICl vdWH is structurally and thermodynamically stable due to the low binding energy and the small energy fluctuation at room temperature.

View Article and Find Full Text PDF

We demonstrate high-throughput evaluation of the half-metallicity of CoMnSi Heusler alloys by spin-integrated hard X-ray photoelectron spectroscopy (HAXPES) of composition-spread films performed with high-brilliance synchrotron radiation at NanoTerasu, which identifies the optimum composition showing the best half-metallicity. Co Mn Si composition-spread thin films for  = 10-40% with a thickness of 30 nm are fabricated on MgO(100) substrates using combinatorial sputtering technique. The 2-ordering and (001)-oriented epitaxial growth of CoMnSi are confirmed by X-ray diffraction for  = 18-40%.

View Article and Find Full Text PDF

Oxygen vacancies (V's) are of paramount importance in influencing the properties and applications of ceria (CeO). Yet, comprehending the distribution and nature of V's poses a significant challenge due to the vast number of electronic configurations and intricate many-body interactions among V's and polarons (Ce ions). In this study, we established a cluster expansion model based on first-principles calculations and statistical learning to decouple the interactions among the Ce ions and V's, thereby circumventing the limitations associated with sampling electronic configurations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!