Enhancement of photoluminescence from ZnO film by single wall carbon nanotubes.

J Nanosci Nanotechnol

Quantum-Function Research Laboratory and Department of Physics, Hanyang University, Seoul 133-791, Korea.

Published: July 2011

Optical emissions from ZnO films were enhanced by a formation of hybrid structures with single wall carbon-nanotubes (SWCNTs). The SWCNTs were characterized by the presence of the associated fibers and islands together with many carbon nanotube structures and their average height was about < or = 40 nm from atomic force microscope and scanning electron microscope measurements. The intensities of photoluminescence on ZnO films with SWCNTs were increased up to about 30 and 60% in the region of 3.3 eV (near band edge) and 2.3 eV (deep-level) bands, respectively. It was considered that the enhancement of optical emissions from ZnO might be resulted from the effects of an excitation light scattering by SWCNTs and a surface plasmon resonance between bandgap of ZnO and SWCNTs. The surface plasmon resonance mode in the ultra-violet regions is smaller than the deep-level region relatively. This result showed that the commercial ZnO/carbon nanotubes have a feasibility of application to optoelectronic device.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.4347DOI Listing

Publication Analysis

Top Keywords

photoluminescence zno
8
single wall
8
optical emissions
8
emissions zno
8
zno films
8
swcnts surface
8
surface plasmon
8
plasmon resonance
8
zno
5
swcnts
5

Similar Publications

Zinc oxide nanoparticles (ZnO NPs) with varying levels of nitrogen (N) doping were synthesized using a straightforward sol-gel approach. The morphology and microstructure of the N-doped ZnO NPs were examined through techniques such as SEM, XRD, photoluminescence, and Raman spectroscopy. The characterization revealed visible changes in the morphology and microstructure resulting from the incorporation of nitrogen into the ZnO lattice.

View Article and Find Full Text PDF

This study employed a hydrothermal method to coat CuS onto PbS quantum dots loaded with ZnO, resulting in a core-shell-structured (PbS/ZnO)@CuS hetero-structured photocatalyst. The sulfide coating enhanced the photocatalyst's absorption in the near-infrared to visible light range and effectively reduced electron-hole (h) pair recombination during photocatalytic processes. Electron microscopy analysis confirmed the successful synthesis of this core-shell structure using polyvinylpyrrolidone (PVP); however, the spatial hindrance effect of PVP led to a disordered arrangement of the CuS lattice, facilitating electron-hole recombination.

View Article and Find Full Text PDF

In this study, in situ-synthesized ZnO/g-CN based composites were used as photocatalysts for organic pollution removal. These nanocomposites were prepared through simple calcination of a mixture of melamine and ZnO nanoparticles and underwent comprehensive evaluation of their structural, morphological, optical, and photocatalytic properties, using various analytical techniques. As the g-CN content increased, the band gap decreased from 3.

View Article and Find Full Text PDF

In this work, the sensing ability and the underlying reaction pathways of HS adsorption on two nanomaterial systems, pristine zinc oxide (ZnO) nanowires (NWs) and gold functionalized zinc oxide nanowires (Au@ZnO NWs), were explored in a side-by-side comparison of optical and electrical gas sensing. The properties of optical sensing were analyzed by photoluminescence intensity-over-time measurements (-) of as-grown ZnO NW samples, and the electrical gas-sensing properties were analyzed by current-over-time measurements (-) of ZnO NW chemically sensitive field-effect transistor (ChemFET) structures with a gas-sensitive open gate. The ZnO NWs were grown by high-temperature chemical vapor deposition (CVD) and thereafter surface-functionalized with a thin Au nanoparticle layer by magnetron sputtering.

View Article and Find Full Text PDF

Studies on Morphological Evolution of Gravure-Printed ZnO Thin Films Induced by Low-Temperature Vapor Post-Treatment.

Nanomaterials (Basel)

December 2024

Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, P.le E. Fermi 1, Portici, 80055 Naples, Italy.

In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible temperature-sensitive substrates remains ever in demand. In this study, vapor post-treatment (VPT) is investigated as a potential, simple and low-cost post-preparative method to morphologically modify gravure-printed zinc oxide (ZnO) nanoparticulate thin films at low temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!