The dependence of the integrated photoluminescence on the excitation power intensity in Al(0.3)Ga(0.7)As/GaAs multi quantum well is studied. Four peaks are found in the photoluminescence spectra, which are corresponding to the four quantum wells in the sample. The temperature dependence of the exponent alpha of the power law shows peculiar behavior for the quantum well of width 11.2 nm (peak C). The value of the exponent alpha exceeds the quadratic value predicted by the steady state model near room temperature. All other peaks shows linear dependence in the low temperature range which switches to super linear in the high temperature range with values of alpha less than 2. Carriers thermal capture and re-trapping is discussed. The presented results are a sign of thermal dissociation of exciton in quantum well near room temperature. The peculiar behavior is attributed to the excess flow of the charge carriers to this QW by thermal escape from other QWs, and also due to excess free carriers because of exciton dissociation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2011.4421 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.
Spin-dependent charge tunneling transport of magnetic nanocomposites under alternating current or direct current has revolutionized the understanding of the quantum-mechanical phenomenon in complex granular solids. The tunnel magnetodielectric (TMD) and tunnel magnetoresistance (TMR) effects are two critical functionalities in this context, where dielectric permittivity and electrical resistance, respectively, change in response to an applied magnetic field due to charge tunneling. However, the structural correlation between TMD and TMR, as well as the mechanisms, remains poorly understood, largely due to the challenges in directly characterizing nanoscale intergranular interactions.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, University of Zanjan, PO Box 38791-45371 Zanjan, Iran.
The high abundance of acetone ((CH)C═O), which makes it a good candidate for oxygenated molecules, and the high reactivity of oxygen atoms in the first excited state O(D) are two well-known facts in the chemistry of the atmosphere. In this research, we prove that the singlet oxygen and acetone system is capable of proceeding through multiwell multipath reactions, leading to the production of several organic aerosols. Hence, the nature of species released by the (CH)C═O + O(D) reaction to air can be clarified by profound attention to the possible routes.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, India.
This study probes the vibronic interactions in the photoelectron spectra of CAlGe, exploring its six excited electronic states through an approach that combines the electronic structure calculations and the quantum nuclear dynamics. Central to this investigation is utilizing a model diabatic Hamiltonian, which allows for the exact evaluation of Hamiltonian parameters and fitting potential energy cuts (PECs). Notably, the analysis of these PECs uncovers pronounced nonadiabatic effects within the photoelectron spectra, emphasized by the presence of multiple conical intersections.
View Article and Find Full Text PDFBiotechnol J
December 2024
Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany.
The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells.
View Article and Find Full Text PDFSmall Methods
December 2024
School of Material Science and Engineering, National Institute of Technology Calicut, NIT Campus, Kozhikode, Kerala, 673601, India.
The work describes a novel sensing and transportation feasibility of the well-established antifungal drug Flucytosine (5-FC) using a 2D Silicon carbide (SiC) and Germanium-doped Silicon carbide (Ge@SiC) nanosheet via PBE level of Density functional theory. The computational study revealed that the drug molecules adhere to SiC and Ge@SiC sheets, maintaining their structural properties through physisorption on SiC and chemisorption on Ge@SiC. The charge transfer process associated with the adsorption is observed by Lowdin charge analysis and both the SiC and Ge@SiC sheets are identified as a feasible oxidation-based nanosensor for the drug.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!