A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Charge-trapping characteristics of Al2O3/Cu/Al2O3 nanolaminate structures prepared through atomic layer deposition. | LitMetric

The nanolaminate Al2O3/Cu/Al2O3 structures were constructed on p-type Si (001) substrates using atomic layer deposition (ALD) process with the aim to fabricating nonvolatile charge-trap memories. Low temperature Cu thin layers were deposited through plasma-enhanced atomic layre depositon of Cu aminoalkoxide (Cu(dmamb)2) combined with hydrogen plasma and Al2O3 layers were prepared by thermal atomic layer deposition of trimethylaluminum (TMA) combined with H2O. Nonvolatile features were confirmed using capacitance-voltage (C-V) measurements. The copper film functions as a charge-trapping layer and the Al2O3 thin layers were employed as tunneling and control oxide layers. Line shapes and binding energies of Cu metal and the thin layer of 6 nm Cu in nanolaminate structures were observed in the X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) image. The V(FB) shift width of the Al2O3 (28 nm)/Cu (6 nm)/Al2O3 (4.2 nm)/Si laminate structure is found to be 4.75 V in voltage sweeping between -10 and +10 V, leading to the trap density of 1.68 x 10(18) cm(-3).

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.4335DOI Listing

Publication Analysis

Top Keywords

atomic layer
12
layer deposition
12
nanolaminate structures
8
thin layers
8
layer
5
charge-trapping characteristics
4
characteristics al2o3/cu/al2o3
4
al2o3/cu/al2o3 nanolaminate
4
structures prepared
4
atomic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!