Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We recently showed the fortifying effect of poly-caprolactone (PCL) scaffold in liquid solder-mediated laser-assisted vascular repair (ssLAVR) of porcine carotid arteries, yielding a mean ± SD leaking point pressure of 488 ± 111 mmHg. Despite supraphysiological pressures, the frequency of adhesive failures was indicative of weak bonding at the solder-tissue interface. As a result, this study aimed to improve adhesive bonding by using a semi-solid solder and single-spot vs. scanning irradiation. In the first experiment, in vitro ssLAVR (n=30) was performed on porcine abdominal aorta strips using a PCL scaffold with a liquid or semi-solid solder and a 670-nm diode laser for dual-pass scanning. In the second experiment, the scanning method was compared to single-spot lasing. The third experiment investigated the stability of the welds following hydration under quasi-physiological conditions. The welding strength was defined by acute breaking strength (BS). Solder-tissue bonding was examined by scanning electron microscopy and histological analysis was performed for thermal damage analysis. Altering solder viscosity from liquid to semi-solid solder increased the BS from 78 ± 22 N/cm(2) to 131 ± 38 N/cm(2) . Compared to scanning ssLAVR, single-spot lasing improved adhesive bonding to a BS of 257 ± 62 N/cm(2) and showed fewer structural defects at the solder-tissue interface but more pronounced thermal damage. The improvement in adhesive bonding was associated with constantly stronger welds during two weeks of hydration. Semi-solid solder and single-spot lasing increased welding strength by reducing solder leakage and improving adhesive bonding, respectively. The improvement in adhesive bonding was associated with enhanced weld stability during hydration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/term.486 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!