Constitutive activation of M-Ras has previously been reported to cause morphologic and growth transformation of murine cells, suggesting that M-Ras plays a role in tumorigenesis. Cell transformation by M-Ras correlated with weak activation of the Raf/MEK/ERK pathway, although contributions from other downstream effectors were suggested. Recent studies indicate that signaling events distinct from the Raf/MEK/ERK cascade are critical for human tumorigenesis. However, it is unknown what signaling events M-Ras triggers in human cells. Using constitutively active M-Ras (Q71L) containing additional mutations within its effector-binding loop, we found that M-Ras induces MEK/ERK-dependent and -independent Elk1 activation as well as phosphatidylinositol 3 kinase (PI3K)/Akt and JNK/cJun activation in human MCF-7 breast cancer cells. Among several human cell lines examined, M-Ras-induced MEK/ERK-independent Elk1 activation was only detected in MCF-7 cells, and correlated with Rlf/M-Ras interaction and Ral/JNK activation. Supporting a role for M-Ras signaling in breast cancer, EGF activated M-Ras and promoted its interaction with endogenous Rlf. In addition, constitutive activation of M-Ras induced estrogen-independent growth of MCF-7 cells that was dependent on PI3K/Akt, MEK/ERK, and JNK activation. Thus, our studies demonstrate that M-Ras signaling activity differs between human cells, highlighting the importance of defining Ras protein signaling within each cell type, especially when designing treatments for Ras-induced cancer. These findings also demonstrate that M-Ras activity may be important for progression of EGFR-dependent tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303964 | PMC |
http://dx.doi.org/10.1002/jcb.23458 | DOI Listing |
Acta Crystallogr F Struct Biol Commun
September 2024
Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, CO 80301, USA.
M-RAS plays a crucial role in the RAF-MEK signaling pathway. When activated by GTP, M-RAS forms a complex with SHOC2 and PP1C, initiating downstream RAF-MEK signal transduction. In this study, the crystal structure of the GDP-bound human M-RAS protein is presented with two forms of crystal packing.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2023
School of Science, Shandong Jiaotong University, Jinan, China.
Mutations highly affect the structural flexibility of two switch domains in M-RAS considered an important target of anticancer drug design. Gaussian accelerated molecular dynamics (GaMD) simulations were applied to probe the effect of mutations P40D, D41E, and P40D/D41E/L51R on the conformational transition of the switch domains from the GTP-bound M-RAS. The analyses of free energy landscapes (FELs) not only reveal that three mutations induce less energetic states than the wild-type (WT) M-RAS but also verify that the switch domains are extremely disordered.
View Article and Find Full Text PDFCell Commun Signal
September 2021
Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.
Background: Loss of the Ras GTPase-activating protein neurofibromin promotes nervous system tumor pathogenesis in patients with neurofibromatosis type 1 (NF1). Neurofibromin loss potentially hyperactivates classic Ras (H-Ras, N-Ras, K-Ras), M-Ras, and R-Ras (R-Ras, R-Ras2/TC21) subfamily proteins. We have shown that classic Ras proteins promote proliferation and survival, but not migration, in malignant peripheral nerve sheath tumor (MPNST) cells.
View Article and Find Full Text PDFAm J Pathol
September 2021
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina. Electronic address:
The contributions that the R-Ras subfamily [R-Ras, R-Ras2/teratocarcinoma 21 (TC21), and M-Ras] of small GTP-binding proteins make to normal and aberrant cellular functions have historically been poorly understood. However, this has begun to change with the realization that all three R-Ras subfamily members are occasionally mutated in Noonan syndrome (NS), a RASopathy characterized by the development of hematopoietic neoplasms and abnormalities affecting the immune, cardiovascular, and nervous systems. Consistent with the abnormalities seen in NS, a host of new studies have implicated R-Ras proteins in physiological and pathologic changes in cellular morphology, adhesion, and migration in the cardiovascular, immune, and nervous systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!