Cyclic diguanosine monophosphate (c-di-GMP) is a key signalling molecule involved in regulating many important biological functions in bacteria. The synthesis of c-di-GMP is catalyzed by the GGDEF-domain-containing diguanylate cyclase (DGC), the activity of which is regulated by the binding of product at the allosteric inhibitory (I) site. However, a significant number of GGDEF domains lack the RxxD motif characteristic of the allosteric I site. Here, the structure of XCC4471(GGDEF), the GGDEF domain of a DGC from Xanthomonas campestris, in complex with c-di-GMP has been solved. Unexpectedly, the structure of the complex revealed a GGDEF-domain dimer cross-linked by two molecules of c-di-GMP at the strongly conserved active sites. In the complex (c-di-GMP)(2) adopts a novel partially intercalated form, with the peripheral guanine bases bound to the guanine-binding pockets and the two central bases stacked upon each other. Alteration of the residues involved in specific binding to c-di-GMP led to dramatically reduced K(d) values between XCC4471(GGDEF) and c-di-GMP. In addition, these key residues are strongly conserved among the many thousands of GGDEF-domain sequences identified to date. These results indicate a new product-bound form for GGDEF-domain-containing proteins obtained via (c-di-GMP)(2) binding at the active site. This novel XCC4471(GGDEF)-c-di-GMP complex structure may serve as a general model for the design of lead compounds to block the DGC activity of GGDEF-domain-containing proteins in X. campestris or other microorganisms that contain multiple GGDEF-domain proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S090744491104039XDOI Listing

Publication Analysis

Top Keywords

diguanylate cyclase
8
active site
8
dgc activity
8
ggdef-domain-containing proteins
8
c-di-gmp
6
structure
4
structure inhibition
4
inhibition ggdef
4
ggdef diguanylate
4
cyclase complexed
4

Similar Publications

RpoN mediates biofilm formation by directly controlling gene cluster and c-di-GMP synthetic metabolism in .

Biofilm

June 2025

State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China.

is a prevalent pathogen in both humans and marine species, exhibiting high adaptability to various adverse environmental conditions. Our previous studies have shown that Δ formed three enhanced biofilm types, including spectacular surface-attached biofilm (SB), scattered pellicle biofilm (PB), and colony rugosity. However, the precise mechanism through which regulates biofilm formation has remained unclear.

View Article and Find Full Text PDF

Tandem GGDEF-EAL Domain Proteins Pleiotropically Modulate c-di-GMP Metabolism Enrolled in Bacterial Cellulose Biosynthesis.

J Agric Food Chem

January 2025

Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China.

Article Synopsis
  • Cyclic diguanosine monophosphate (c-di-GMP) plays a vital role in regulating the synthesis of bacterial cellulose (BC) and is managed by enzymes known as diguanylate cyclases (DGCs) and phosphodiesterases (PDEs).
  • A study analyzed ten proteins with GGDEF-EAL tandem domains, revealing five with DGC activity and five with PDE activity, with one protein (GE03) displaying both functions.
  • Mutant strains lacking GGDEF-EAL proteins showed significant changes in BC production, while knocking out PDE proteins resulted in a 48.1% increase in BC titer, enhancing the understanding of c-di-GMP's role in BC
View Article and Find Full Text PDF

ArgR regulates motility and virulence through positive control of flagellar genes and inhibition of diguanylate cyclase expression in Aeromonas veronii.

Commun Biol

December 2024

Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.

Flagella are essential for biofilm formation, adhesion, virulence, and motility. In this study, the deletion of argR resulted in defects in flagellar synthesis and reduced motility, nevertheless, the underlying mechanism by which ArgR regulated bacterial motility remained unclear. ChIP-Seq and RNA-Seq analysis revealed that ArgR regulated the expression of flagellar genes, concluding two-component system flrBC and multitudinous flagellar structure genes.

View Article and Find Full Text PDF

A novel Diguanylate cyclase VdcR has multifaceted regulatory functions in the pathogenicity of Vibrio vulnificus.

J Microbiol Immunol Infect

November 2024

Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan. Electronic address:

Background: Vibrio vulnificus is a Gram-negative pathogen that infects humans through foodborne or wound infections. Victims of V. vulnificus infections face significant health risks, including cellulitis and septicemia, which have rapid disease progression and high mortality rates.

View Article and Find Full Text PDF

Tetracycline induces operon expression to promote biofilm formation in .

Appl Environ Microbiol

November 2024

National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, China.

The overuse and wanton discharge of antibiotics produces a threat to bacteria in the environment, which, in turn, stimulates the more rapid emergence of antibiotic-resistant bacteria. actively forms biofilms to protect the population under tetracycline stress, but the molecular mechanism remains unclear. This study found that tetracycline at sub-minimal inhibitory concentrations increased cyclic diguanylate (c-di-GMP), a second messenger that positively regulates biofilm formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!