Insect prophenoloxidases (PPOs) are a group of important innate immunity proteins. Although there have been numerous studies dealing with the PPO activation cascade, the detailed biochemical behaviors of the PPO family proteins remain to be clearly established. This is due primarily to the difficulty in obtaining adequate amounts of PPO proteins for comprehensive characterization. In this study, we expressed three Drosophila melanogaster PPO genes in Escherichia coli, and extensively evaluated expression conditions for obtaining soluble proteins. Through the manipulation of expression conditions, particularly the culture temperature of PPO-transformed E. coli cells, we were able to obtain large quantities of soluble recombinant PPO proteins. Additional Cu(2+), either added into the culture medium during PPO induction or directly mixed with the purified rPPO preparations, was necessary to produce Cu(2+) associated proenzymes. Cu(2+) associated PPOs showed obvious enzyme activities after activation by either ethanol or cetylpyridinium chloride, or by AMM1 (a pupal protein fraction containing native serine proteases for PPO activation). Dose responses for association of individual purified Drosophila rPPOs with Cu(2+) showed that Drosophila rPPO1 and rPPO3 had relatively higher affinity for Cu(2+) than rPPO2 did. Surprisingly, however, high concentration of Cu(2+) (2 mM) completely inhibited PPO activity. Each rPPO had similar activity when dopamine or l-DOPA was the substrate. However, rPPO1 alone had very high activity if l-tyrosine was used as a substrate. After activation by ethanol or 2-propanol, Km and Vmax of the three rPPOs changed as shown in the following: rPPO2
Download full-text PDF
Source
http://dx.doi.org/10.1016/j.dci.2011.11.005 DOI Listing Publication Analysis
Top Keywords
PLoS Genet
January 2025
Department of Biology, Boston University, Boston Massachusetts, United States of America.
The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, Klosterneuburg AT-3400, Austria.
Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed mechanistic model of the gap gene network in the embryo, optimizing its 50+ parameters to maximize the information that gene expression levels provide about nuclear positions.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA.
Unlike most species that use telomerase for telomere maintenance, many dipterans, including , rely on three telomere-specific retrotransposons (TRs)-, , and -to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
Lysosomal pH dysregulation is a critical element of the pathophysiology of neurodegenerative diseases, cancers, and lysosomal storage disorders (LSDs). To study the role of lysosomes in pathophysiology, probes to analyze lysosomal size, positioning, and pH are indispensable tools. Here, we developed and characterized a ratiometric genetically encoded lysosomal pH probe, RpH-ILV, targeted to a subpopulation of lysosomal intraluminal vesicles.
View Article and Find Full Text PDFSci Adv
January 2025
Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA.
Circadian neurons within animal brains orchestrate myriad physiological processes and behaviors, but the contribution of these neurons to the regulation of sleep is not well understood. To address this deficiency, we leveraged single-cell RNA sequencing to generate a comprehensive census of transcriptomic cell types of clock neurons. We focused principally on the enigmatic DN3s, which constitute most fly brain clock neurons and were previously almost completely uncharacterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!