Respiratory syncytial virus (RSV) infection is the most important viral cause of severe respiratory disease in infants and children worldwide and also forms a serious threat in the elderly. The development of RSV vaccine, however, has been hampered by the disastrous outcome of an earlier trial using an inactivated and parenterally administered RSV vaccine which did not confer protection but rather primed for enhanced disease upon natural infection. Mucosal administration does not seem to prime for enhanced disease, but non-replicating RSV antigen does not induce a strong mucosal immune response. We therefore investigated if mucosal immunization with inactivated RSV supplemented with innate receptor ligands, TLR9 (CpG ODN) and NOD2 (L18-MDP) through the upper or total respiratory tract is an effective and safe approach to induce RSV-specific immunity. Our data show that beta-propiolactone (BPL) inactivated RSV (BPL-RSV) supplemented with CpG ODN and L18-MDP potentiates activation of antigen-presenting cells (APC) in vitro, as demonstrated by NF-κB induction in a model APC cell line. In vivo, BPL-RSV supplemented with CpG ODN/L18-MDP ligands induces local IgA responses and augments Th1-signature IgG2a subtype responses after total respiratory tract (TRT), but less efficient after upper respiratory tract (intranasal, IN) immunization. Addition of TLR9/NOD2 ligands to the inactivated RSV also promoted affinity maturation of RSV-specific IgG antibodies and shifted T cell responses from mainly IL-5-secreting cells to predominantly IFN-γ-producing cells, indicating a Th1-skewed response. This effect was seen for both IN and TRT immunization. Finally, BPL-RSV supplemented with TLR9/NOD2 ligands significantly improved the protection efficacy against a challenge with infectious virus, without stimulating enhanced disease as evidenced by lack of eotaxin mRNA expression and eosinophil infiltration in the lung. We conclude that mucosal immunization with inactivated RSV antigen supplemented with TLR9/NOD2 ligands is a promising approach to induce effective RSV-specific immunity without priming for enhanced disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2011.11.054 | DOI Listing |
JMIR Res Protoc
January 2025
Department of Public Health and Primary Care, KU Leuven-University of Leuven, Leuven, Belgium.
Background: Young patients aged 16 to 25 years with type 1 diabetes (T1D) often encounter challenges related to deteriorating disease control and accelerated complications. Mobile apps have shown promise in enhancing self-care among youth with diabetes. However, inconsistent findings suggest that further evidence is necessary to confirm the effectiveness of app-based interventions.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Laboratory Medicine, School of Chemical Science and Engineering, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200092, P. R. China.
The healing of bacterial biofilm-infected wounds is a complex process, and the construction of emerging therapeutic modalities that regulate the microenvironment to magnify therapeutic effects and reduce biotoxicity is still highly challenging. Herein, an engineered microneedle (MN) patch is reported to mediate the efficient delivery of black phosphorus nanosheets (BP NSs) and copper peroxide nanodots (CP NDs) for dual nanodynamic sterilization and methicillin-resistant staphylococcus aureus (MRSA)-infected wound healing. Results demonstrate that the system can eliminate biofilm, reduce cytotoxicity, promote angiogenesis and tissue regeneration by the multiple advantages of chemodynamic therapy (CDT), enhanced photodynamic therapy (PDT), and improved degradation process from BP NSs to phosphate for promoting cell proliferation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.
Determining the structure-function relationships of protein aggregates is a fundamental challenge in biology. These aggregates, whether formed in vitro, within cells, or in living organisms, present significant heterogeneity in their molecular features such as size, structure, and composition, making it difficult to determine how their structure influences their functions. Interpreting how these molecular features translate into functional roles is crucial for understanding cellular homeostasis and the pathogenesis of various debilitating diseases like Alzheimer's and Parkinson's.
View Article and Find Full Text PDFActa Orthop
January 2025
Department of Orthopedic Surgery and Traumatology, Kolding Hospital; Department of Clinical Research, University of Southern Denmark; Institute of Regional Health Research, University of Southern Denmark; Department of Orthopedic Surgery and Traumatology, Odense University Hospital, Denmark.
Background And Purpose: Disease- or procedure-specific registers offer valuable information but are costly and often inaccurate regarding outcome measures. Alternatively, automatically collected data from administrative systems could be a solution, given their high completeness. Our primary aim was to validate a method for identifying secondary surgical procedures (reoperations) in the Danish National Patient Register (DNPR) within the first year following primary fracture surgery.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
Impaired wound healing affects the life quality of patients and causes a substantial financial burden. Hydrogen-rich medium is reported to have antioxidant and anti-inflammatory effects. However, the role of hydrogen-rich saline (HRS) in cutaneous wound healing remains largely unexplored, especially by metabolomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!