Monogenic neurodevelopmental disorders provide key insights into the pathogenesis of disease and help us understand how specific genes control the development of the human brain. Timothy syndrome is caused by a missense mutation in the L-type calcium channel Ca(v)1.2 that is associated with developmental delay and autism. We generated cortical neuronal precursor cells and neurons from induced pluripotent stem cells derived from individuals with Timothy syndrome. Cells from these individuals have defects in calcium (Ca(2+)) signaling and activity-dependent gene expression. They also show abnormalities in differentiation, including decreased expression of genes that are expressed in lower cortical layers and in callosal projection neurons. In addition, neurons derived from individuals with Timothy syndrome show abnormal expression of tyrosine hydroxylase and increased production of norepinephrine and dopamine. This phenotype can be reversed by treatment with roscovitine, a cyclin-dependent kinase inhibitor and atypical L-type-channel blocker. These findings provide strong evidence that Ca(v)1.2 regulates the differentiation of cortical neurons in humans and offer new insights into the causes of autism in individuals with Timothy syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517299 | PMC |
http://dx.doi.org/10.1038/nm.2576 | DOI Listing |
Sci Rep
November 2024
Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Timothy syndrome type 1 (TS1), a malignant variant of Long QT Syndrome, is caused by L-type Ca2+ Channel (LTCC) inactivation defects secondary to the p.Gly406Arg mutation in the CACNA1C gene. Leveraging on the experimental in vitro data from our TS1 knock-in swine model and their wild-type (WT) littermates, we first developed a mathematical model of WT large white swine ventricular cardiomyocyte electrophysiology that reproduces a wide range of experimental data, including ionic current properties, action potential (AP) dynamics, and handling.
View Article and Find Full Text PDFOrphanet J Rare Dis
November 2024
Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institute of Health, Bethesda, MD, USA.
BMC Pediatr
November 2024
Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China.
Nat Commun
October 2024
Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!