The development of vaccines that generate mixed humoral and cellular immune responses is a challenge in vaccinology. Poly(lactide-co-glycolide) microspheres are vaccine adjuvants which possess the advantage of allowing the coencapsulation of other adjuvants in addition to the antigen. Thus, we can stimulate the immune system from different ways and resemble the effects of a natural infection. In this study, we have coencapsulated BSA with monophosphoryl lipid A, polyinosinic-polycytidylic acid, α-galactosylceramide and alginate into PLGA microspheres. All the microspheres have developed a higher humoral immune response, in terms of release of total IgG, in comparison to the administration of soluble antigen. In addition, they triggered a more balanced IgG1/IgG2a response. The combination of MPLA and α-galactosylceramide within the microspheres developed the higher cellular response, confirming that combination of adjuvants with different action mechanisms is a good strategy to increase vaccines' immunogenicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2011.11.057DOI Listing

Publication Analysis

Top Keywords

polylactide-co-glycolide microspheres
8
immune response
8
microspheres developed
8
developed higher
8
microspheres
5
combination immune
4
immune stimulating
4
adjuvants
4
stimulating adjuvants
4
adjuvants polylactide-co-glycolide
4

Similar Publications

Enhanced browning of adipose tissue by mirabegron-microspheres.

J Control Release

November 2024

Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany. Electronic address:

Thermogenic brown adipose tissue (BAT) has emerged as an attractive target for combating obesity. However, pharmacological activation of energy expenditure by BAT and/or induction of browning of white adipose tissue (WAT) has been hampered by cardiovascular side effects. To address these concerns, we developed polylactide-co-glycolide acid (PLGA) microspheres loaded with mirabegron (MIR), a selective beta-3 adrenergic receptor (ADRB3) agonist, to achieve sustained local induction and activation of thermogenic adipocytes.

View Article and Find Full Text PDF

Over the past few decades, long acting injectable (LAI) depots of polylactide-co-glycolide (PLGA) or polylactic acid (PLA) based microspheres have been developed for controlled drug delivery to reduce dosing frequency and to improve the therapeutic effects. Biopharmaceuticals such as proteins and peptides are encapsulated in the microspheres to increase their bioavailability and provide a long release period (days or months) with constant drug plasma concentration. The biodegradable and biocompatible properties of PLGA/PLA polymers, including but not limited to molecular weight, end group, lactide to glycolide ratio, and minor manufacturing changes, could greatly affect the quality attributes of microsphere formulations such as release profile, size, encapsulation efficiency, and bioactivity of biopharmaceuticals.

View Article and Find Full Text PDF

In this experimental study, the biodegradable polylactide-co-glycolide (PLGA) microparticles (MP) loaded with the insoluble antidepressant mirtazapine were prepared by the simple o/w solvent evaporation method. The formation involved intrinsic variables, such as the content of polymer (700, 900 or 1200 mg), dichloromethane (5 or 10 ml) and/or drug (200 or 400 or 600 mg), and the volume of the aqueous emulsion phase (400, 600 or 800 ml). The influence of these parameters on the size and morphology of microparticles, encapsulation efficiency, and drug release behavior was observed.

View Article and Find Full Text PDF

Easy recurrence of large hepatocellular carcinoma (HCC) after microwave (MW) ablation or transarterial chemoembolization (TACE) is still very challenging. In this study, porous polylactide-co-glycolide (PLGA) microspheres as a MW-susceptible TACE agent (P-PLGA@DN microspheres) for triple-combination therapy of large HCC were developed via the double emulsion technique using recruited ions (Na and Cl) and doxorubicin hydrochloride (DOX·HCl) to enhance the efficiency of MW absorption and DOX chemotherapy after tumor embolization. The as-prepared microspheres with superior MW-heat conversion can enlarge the ablation area by >53% in a simulated physiological environment.

View Article and Find Full Text PDF

Delivery of pharmaceuticals to the cochleae of patients with auditory dysfunction could potentially have many benefits from enhancing auditory nerve survival to protecting remaining sensory cells and their neuronal connections. Treatment would require platforms to enable drug delivery directly to the cochlea and increase the potential efficacy of intervention. Cochlear implant recipients are a specific patient subset that could benefit from local drug delivery as more candidates have residual hearing; and since residual hearing directly contributes to post-implantation hearing outcomes, it requires protection from implant insertion-induced trauma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!