PPADS, a P2X receptor antagonist, as a novel inhibitor of the reverse mode of the Na⁺/Ca²⁺ exchanger in guinea pig airway smooth muscle.

Eur J Pharmacol

Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF, Mexico.

Published: January 2012

The Na(+)/Ca(2+)exchanger (NCX) principal function is taking 1 Ca(2+) out of the cytoplasm and introducing 3 Na(+). The increase of cytoplasmic Na(+) concentration induces the NCX reverse mode (NCX(REV)), favoring Ca(2+) influx. NCX(REV) can be inhibited by: KB-R7943 a non-specific compound that blocks voltage-dependent and store-operated Ca(2+) channels; SEA0400 that appears to be selective for NCX(REV), but difficult to obtain and SN-6, which efficacy has been shown only in cardiomyocytes. We found that PPADS, a P2X receptor antagonist, acts as a NCX(REV) inhibitor in guinea pig tracheal myocytes. In these cells, we characterized the NCX(REV) by substituting NaCl and NaHCO(3) with LiCl, resulting in the increase of the intracellular Ca(2+) concentration ([Ca(2+)]i) using fura 2-AM. We analyzed 5 consecutive responses of the NCX(REV) every 10 min, finding no differences among them. To evaluate the effect of different NCX(REV) blockers, concentration response curves to KB-R7943 (1, 3.2 and 10 μM), and SN-6 (3.2, 10 and 30 μM) were constructed, whereas PPADS effect was characterized as time- and concentration-dependent (1, 3.2, 10 and 30 μM). PPADS had similar potency and efficacy as KB-R7943, whereas SN-6 was the least effective. Furthermore, KCl-induced contraction, sensitive to D600 and nifedipine, was blocked by KB-R7943, but not by PPADS. KCl-induced [Ca(2+)]i increment in myocytes was also significantly decreased by KBR-7943 (10 μM). Our results demonstrate that PPADS can be used as a reliable pharmacological tool to inhibit NCX(REV), with the advantage that it is more specific than KB-R7943 because it does not affect L-type Ca(2+) channels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2011.11.018DOI Listing

Publication Analysis

Top Keywords

ppads p2x
8
p2x receptor
8
receptor antagonist
8
reverse mode
8
guinea pig
8
ncxrev
8
ca2+ channels
8
ppads
6
ca2+
5
kb-r7943
5

Similar Publications

Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.

View Article and Find Full Text PDF

There is growing interest in the P2X4 receptor as a therapeutic target for several cardiovascular, inflammatory and neurological conditions. Key to exploring the physiological and pathophysiological roles of P2X4 is access to selective compounds to probe function in cells, tissues and animal models. There has been a recent growth in selective antagonists for P2X4, though agonist selectivity is less well studied.

View Article and Find Full Text PDF

Purinergic inhibitory regulation of esophageal smooth muscle is mediated by P2Y receptors and ATP-dependent potassium channels in rats.

J Physiol Sci

April 2024

Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.

Article Synopsis
  • Purines like ATP play a crucial role in regulating the movement of the gastrointestinal tract, particularly in esophageal motility.
  • Researchers conducted an experiment using isolated rat esophagus segments, finding that ATP induces relaxation of esophageal smooth muscle after precontraction.
  • The relaxation mechanism involves the activation of P2Y receptors and the opening of ATP-dependent potassium channels, while certain receptor antagonists can inhibit this effect.
View Article and Find Full Text PDF

Structural insights into the orthosteric inhibition of P2X receptors by non-ATP analog antagonists.

Elife

April 2024

State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, China.

P2X receptors are extracellular ATP-gated ion channels that form homo- or heterotrimers and consist of seven subtypes. They are expressed in various tissues, including neuronal and nonneuronal cells, and play critical roles in physiological processes such as neurotransmission, inflammation, pain, and cancer. As a result, P2X receptors have attracted considerable interest as drug targets, and various competitive inhibitors have been developed.

View Article and Find Full Text PDF

Prevention of M2 polarization and temporal limitation of differentiation in monocytes by extracellular ATP.

BMC Immunol

June 2023

Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany.

Background: Elevated levels of extracellular adenosine triphosphate (ATP) modulate immunologic pathways and are considered to be a danger signal in inflammation, lung fibrosis and cancer. Macrophages can be classified into two main types: M1 macrophages are classically activated, pro-inflammatory macrophages, whereas M2 macrophages are alternatively activated, pro-fibrotic macrophages. In this study, we examined the effect of ATP on differentiation of native human monocytes into these macrophage subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!