[MLCl(2)] (L = (1H-benzimidazol-2-ylmethyl)-N-(4-bromo-phenyl)-amine; M = Pd & Pt) and [PdL(OH(2))(2)]∙2X∙zH(2)O (X = Br, I, z = 2; X = SCN, z = 1; X = NO(3), z = 0) complexes have been synthesized as potential anticancer compounds and their structures were elucidated using elemental analysis, spectral, thermal analysis and X-ray powder diffraction. The benzimidazole (L) crystallizes in the space group P2(1)/c with a = 8.6660(3) Å, b = 16.6739(7) Å, c = 9.8611(4) Å and β = 113.505(3) ° and forms an infinite chain structure with a trans-zigzag type along the crystallographic axis "a", through the intermolecular H-bond. FT-IR and (1)H NMR studies revealed that the ligand L is coordinated to the metal ion via the pyridine-type nitrogen (N(py)) of the benzimidazole ring and secondary amino group (NH(sec)). Quantum mechanical calculations of energies, geometries, vibrational wavenumbers, and (1)H NMR of the benzimidazole L and its complexes were carried out by DFT/B3LYP method combined with 6-31G(d) and LANL2DZ basis sets. Natural bond orbital (NBO) analysis and frontier molecular orbitals (FMO) were performed at B3LYP/LANL2DZ level of theory. The benzimidazole L, in comparison to its metal complexes was screened for its antibacterial activity. The complexes showed cyctotoxic effects against human breast cancer (MCF7), hepatocarcinoma (HepG(2)) and colon carcinoma cells (HCT). The platinum complex (6) exhibited a moderate antitumor activity against MCF7 with IC(50) = 10.2 μM comparing to that reported for cis-platin 9.91 μM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2011.11.008DOI Listing

Publication Analysis

Top Keywords

complexes
5
novel palladiumii
4
palladiumii platinumii
4
platinumii complexes
4
complexes 1h-benzimidazol-2-ylmethyl-n-4-bromo-phenyl-amine
4
1h-benzimidazol-2-ylmethyl-n-4-bromo-phenyl-amine structural
4
structural studies
4
studies anticancer
4
anticancer activity
4
activity [mlcl2]
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!