Systems Biology is about combining theory, technology, and targeted experiments in a way that drives not only data accumulation but knowledge as well. The challenge in Systems Biomedicine is to furthermore translate mechanistic insights in biological systems to clinical application, with the central aim of improving patients' quality of life. The challenge is to find theoretically well-chosen models for the contextually correct and intelligible representation of multi-scale biological systems. In this review, we discuss the current state of Systems Biology, highlight the emergence of Systems Biomedicine, and highlight some of the topics and views that we think are important for the efficient application of Systems Theory in Biomedicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2011.11.009 | DOI Listing |
Methods Mol Biol
January 2025
Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, London, UK.
Metabolic profiling continues to develop, and research is now conducted on this topic globally in hundreds of laboratories, from small groups up to national centers and core facilities. Here we briefly provide a perspective on the current status and challenges facing metabolic phenotyping (metabonomics/metabolomics) and consider future directions for this important area of biomarker and systems biology research.
View Article and Find Full Text PDFPurpose Of Review: This review summarizes the current literature on primary graft dysfunction highlighting the current definition, reviewing epidemiology, and describing donor, recipient, and perioperative risk factors in the contemporary era.
Recent Findings: PGD, in its most severe form, complicates 8% of heart transplants and portends a 1-year mortality of close to 40%. PGD is multifactorial and heterogeneous with contributions from donor and recipient risk as well as organ recovery and preservation modalities.
Microbiol Spectr
January 2025
Department of Biology and Chemistry, Changwon National University, Changwon, South Korea.
Unlabelled: Global aquaculture production faces the challenge of biologically cycling nitrogenous waste. Biofloc technology (BFT) systems offer the potential to reduce water consumption and eliminate waste products by using beneficial microorganisms to convert waste into usable nutrients or non-toxic molecules. Unlike flow-through systems (FTS), which depend on continuous water exchange and result in higher operational costs as well as limited microbiome stability, BFT operates without the need for constant water exchange.
View Article and Find Full Text PDFJ Microsc
January 2025
Faculty of Medicine Carl Gustav Carus, Experimental Center, Technische Universität Dresden, Dresden, Germany.
Ribosomes, discovered in 1955 by George Palade, were initially described as small cytoplasmic particles preferentially associated with the endoplasmic reticulum (ER). Over the years, extensive research has focused on both the structure and function of ribosomes. However, a fundamental question - how many ribosomes are present within whole cells - has remained largely unaddressed.
View Article and Find Full Text PDFGenet Epidemiol
January 2025
Interdisciplinary Program of Bioinformatics, College of Natural Science, Seoul National University, Seoul, South Korea.
In this article, we proposed a new method named fused mixed graphical model (FMGM), which can infer network structures associated with dichotomous phenotypes. FMGM is based on a pairwise Markov random field model, and statistical analyses including the proposed method were conducted to find biological markers and underlying network structures of the atopic dermatitis (AD) from multiomics data of 6-month-old infants. The performance of FMGM was evaluated with simulations by using synthetic datasets of power-law networks, showing that FMGM had superior performance for identifying the differences of the networks compared to the separate inference with the previous method, causalMGM (F1-scores 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!