This paper describes an industrial process for stabilising sewage sludge (SS) with lime and evaluates the viability of the stabilised product, denominated Neutral, as a raw material for the cement industry. Lime not only stabilised the sludge, raised the temperature of the mix to 80-100°C, furthering water evaporation, portlandite formation and the partial oxidation of the organic matter present in the sludge. Process mass and energy balances were determined. Neutral, a white powder consisting of portlandite (49.8%), calcite (16.6%), inorganic oxides (13.4%) and organic matter and moisture (20.2%), proved to be technologically apt for inclusion as a component in cement raw mixes. In this study, it was used instead of limestone in raw mixes clinkerised at 1400, 1450 and 1500°C. These raw meals exhibited greater reactivity at high temperatures than the limestone product and their calcination at 1500°C yielded clinker containing over 75% calcium silicates, the key phases in Portland clinker. Finally, the two types of raw meal (Neutral and limestone) were observed to exhibit similar mineralogy and crystal size and distribution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2011.10.021 | DOI Listing |
Microb Pathog
January 2025
Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:
Salmonella presents a significant threat to the health of animals and humans, especially with the rise of strains resistant to multiple drugs. This highlights the necessity for creating sustainable and efficient practical approaches to managing salmonellosis. The most recent and safest approach to combat antimicrobial resistance-associated infections is lytic bacteriophages.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong 030600, China.
The partitioning and migrating of antibiotic residues pose a considerable pollution to the river environment. However, a source-specific approach for quantifying the fate of antibiotics is lacking. To further elucidate the migration behavior of antibiotics from different pollution sources in aquatic environments, we introduced a source-specific partition coefficient (S-Kp) based on Positive Matrix Factorization (PMF) model to improve the multimedia model.
View Article and Find Full Text PDFPathogens
January 2025
Laboratory of Parasitology, Military Institute of Hygiene and Epidemiology, 01-001 Warsaw, Poland.
Despite the vast amount of water on Earth, only a small percent is suitable for consumption, and these resources are diminishing. Moreover, water resources are unevenly distributed, leading to significant disparities in access to drinking water between countries and populations. Increasing consumption and the expanding human population necessitate the development of novel wastewater treatment technologies and the use of water treatment byproducts in other areas, such as fertilisers.
View Article and Find Full Text PDFInsects
December 2024
Department of Integrative Agriculture, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates.
Poultry litter waste management poses a significant global challenge, attributed to its characteristics (odorous, organic, pathogenic, attracting flies). Conventional approaches to managing poultry litter involve composting, biogas generation, or direct field application. Recently, there has been a surge of interest in a novel technology that involves the bioconversion of organic waste utilizing insects (known as entomoremediation), particularly focusing on black soldier fly larvae (BSFL), and has demonstrated successful transformation of various organic waste materials into insect meal and frass (referred to as organic frasstilizer).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Sciences, 00-818 Warsaw, Poland.
Substituting peat moss with compost derived from organic waste in plant nurseries presents a promising solution for reducing environmental impact, improving waste management, and enhancing soil health while promoting sustainable agricultural practices. However, selecting the appropriate proportions of both materials is crucial for each plant species. This study investigates the effects of different ratios of compost and peat mixtures on the growth and development of pepper seedlings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!