New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress.

Plant Sci

Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús (IIB-INTECH/UNSAM-CONICET), Camino Circunvalación Laguna, Km. 6 CC164, (B7130IWA) Chascomús, Pcia. de Buenos Aires, Argentina.

Published: January 2012

Polyamines (putrescine, spermidine and spermine) are traditionally implicated in the response of plants to environmental cues. Free spermine accumulation has been suggested as a particular feature of long-term salt stress, and in the model plant Arabidopsis thaliana the spermine synthase gene (AtSPMS) has been reported as inducible by abscisic acid (ABA) and acute salt stress treatments. With the aim to unravel the physiological role of free spermine during salinity, we analyzed polyamine metabolism in A. thaliana salt-hypersensitive sos mutants (salt overlay sensitive; sos1-1, sos2-1 and sos3-1), and studied the salt stress tolerance of the mutants in spermine and thermospermine synthesis (acl5-1, spms-1 and acl5-1/spms-1). Results presented here indicate that induction in polyamine metabolism is a SOS-independent response to salinity and is globally over-induced in a sensitive background. In addition, under long-term salinity, the mutants in the synthesis of spermine and thermospermine (acl5-1, spms-1 and double acl5-1/spms-1) accumulated more Na(+) and performed worst than WT in survival experiments. Therefore, support is given to a role for these higher polyamines in salt tolerance mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2011.03.013DOI Listing

Publication Analysis

Top Keywords

salt stress
16
arabidopsis thaliana
8
long-term salt
8
free spermine
8
polyamine metabolism
8
spermine thermospermine
8
acl5-1 spms-1
8
spermine
7
salt
6
insights role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!