Electrophysiological responses of rat olfactory tubercle neurons to biologically relevant odours.

Eur J Neurosci

Institut National de la Recherche Agronomique, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie, Equipe Analyse et Modélisation en Imagerie Biologique, Bâtiment 325, F-78352 Jouy-en-Josas, France.

Published: January 2012

Biologically relevant odours were used to stimulate olfactory tubercle neurons in anaesthetized male rats. Among 120 recorded neurons, 118 showed spontaneous activity (mean firing rate, 15.0 ± 1.4 spikes/s). Ninety-eight neurons were exposed to at least one of the four following odour sources: an empty vial, or a vial containing food pellets (familiar odour), a sample of oestrous rat faeces (conspecific sexual odour), or a sample of male fox faeces (predator odour). The proportion of neurons responding with a change in activity was significantly linked to the odour applied. Repetition of the stimulation with the same odour elicited the same activity change. Between 50 and 70% of neuronal activity changes were not accompanied by respiration changes. Fifty-six neurons were exposed successively to all four odours, and 38 of them showed an activity change in response to at least one. The response of a neuron to an odour was not affected by its response to the previous one, and no neuron responded in the same manner to all odours. Conversely, no odour elicited a unique response in this population of neurons. However, the proportions of excited, inhibited and insensitive neurons depended significantly on the odour applied, suggesting that the recruitment of olfactory tubercle neurons is directly dependent on the biological significance of the odour.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2011.07940.xDOI Listing

Publication Analysis

Top Keywords

olfactory tubercle
12
tubercle neurons
12
odour
10
neurons
9
biologically relevant
8
relevant odours
8
neurons exposed
8
odour sample
8
odour applied
8
odour elicited
8

Similar Publications

While olfactory behaviors are influenced by neuromodulatory signals, the underlying mechanism remains unknown. The olfactory tubercle (OT), a component of the olfactory cortex and ventral striatum, consists of anteromedial (am) and lateral (l) domains regulating odor-guided attractive and aversive behaviors, respectively, in which the amOT highly expresses various receptors for feeding-regulated neuromodulators. Here we show functions of appetite-stimulating orexin-1 receptor (OxR1) signaling in the amOT.

View Article and Find Full Text PDF

Subcortical tau deposition and plasma glial fibrillary acidic protein as predictors of cognitive decline in mild cognitive impairment and Alzheimer's disease.

Eur J Nucl Med Mol Imaging

December 2024

Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.

Purpose: This study aimed to investigate the correlation between subcortical tau-positron emission tomography (Tau-PET) and plasma glial fibrillary acidic protein (GFAP) levels and cognitive function in participants with cognitively unimpaired (CU), mild cognitive impairment (MCI) and Alzheimer's disease (AD) conditions.

Methods: 105 participants with amyloid (Aβ) PET and Tau-PET scans were enrolled. Region of interest (ROI) level and voxel-wise comparisons were performed between those three groups.

View Article and Find Full Text PDF

The human brain is organized as a hierarchical global network. Functional connectivity research reveals that sensory cortices are connected to corresponding association cortices via a series of intermediate nodes linked by synchronous neural activity. These sensory pathways and relay stations converge onto central cortical hubs such as the default-mode network (DMN).

View Article and Find Full Text PDF
Article Synopsis
  • The olfactory tubercle (OT) has distinct domains (anteromedial and lateral) that play different roles in learning from pleasant and unpleasant smells, but the specifics of how these areas adapt at the synaptic level aren't fully clear.
  • In research using mouse OT slices, electrical stimulation combined with orexin treatment showed that the anteromedial domain (amOT) can undergo long-term changes in synaptic strength (LTP), while the lateral domain (lOT) does not exhibit the same response.
  • The study found that orexin-A enhances these long-term changes in the amOT, suggesting it's important for learning from food odors, but this mechanism isn't present in the lOT.
View Article and Find Full Text PDF

Controlling Alzheimer's disease by deep brain stimulation based on a data-driven cortical network model.

Cogn Neurodyn

October 2024

School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062 People's Republic of China.

This work aims to explore the control effect of DBS on Alzheimer's disease (AD) from a neurocomputational perspective. Firstly, a data-driven cortical network model is constructed using the Diffusion Tensor Imaging data. Then, a typical electrophysiological feature of EEG slowing in AD is reproduced by reducing the synaptic connectivity parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!