Introduction: LDLr-/- mice are spontaneously hyperlipidemic and resistant to the development of neointimal lesions.
Objectives: This study aimed to determine the factor that prevents the inflammatory process and neointimal lesions and insulin resistance in LDLr-/- mice.
Methods: Three groups of 3-month-old male mice were used: wild-type mice (WT group); LDLr-/- mice fed a standard diet (S group); and LDLr-/- mice fed a high-fat diet (HF group). After 15 days, blood was collected for analysis of plasma lipids, glucose and insulin. The HOMA index was calculated to determine insulin resistance. The heart and aorta were removed for histological study. Histological sections of the heart were processed immunohistochemically with anti-CD40L antibodies to evaluate the inflammatory process. Histological sections of the aorta were stained with hematoxylin/eosin and picrosirius red to assess morphological and morphometric alterations.
Results: The S mice were resistant to the inflammatory process, as shown by low immunoreactivity to CD40L, with high plasma HDL levels, and did not develop insulin resistance, even with moderate hyperlipidemia compared to WT. The HF mice showed severe hyperlipidemia, increased cardiac immunoreactivity to CD40L, pronounced morphological changes in the aortic wall and insulin resistance, associated with a decrease in plasma HDL levels, compared to S. This severe hyperlipidemia in the HF mice can be considered the major metabolic factor inducing oxidative stress in the cardiovascular system, increasing the lipid peroxidation of HDL and hence its removal by the liver, with consequent lowering of plasma HDL levels.
Conclusion: High HDL plasma levels are a protective factor against the development of cardiovascular inflammation and insulin resistance in LDLr-/- mice, preventing the development of neointimal lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0870-2551(11)70024-5 | DOI Listing |
JPEN J Parenter Enteral Nutr
January 2025
The University of Queensland, Brisbane, Australia.
Background: Advanced glycation end-products (AGEs) can enter patients' circulation through exogenous sources, such as enteral nutrition formulae. Circulating AGEs, specifically carboxymethyllysine, can promote insulin resistance and activation of pro-inflammatory pathways leading to oxidative stress, cell death, and organ failure. Suboptimal kidney function increases the risk of elevated circulating AGEs because levels are controlled through urinary excretion.
View Article and Find Full Text PDFBone
January 2025
The School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China. Electronic address:
Objective: To investigate the association between the cumulative exposure to triglyceride-glucose index (cumTyG index) and fragility fractures in the general population.
Methods: This prospective cohort study analyzed active and retired employees of Kailuan Group who participated in three consecutive health examinations in 2006, 2008 and 2010, and were followed up until 31st December 2022. The cohort comprised 55,824 participants who met the inclusion and exclusion criteria and were grouped using the cumTyG index quartiles.
Int Immunopharmacol
January 2025
Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224 Taiwan. Electronic address:
Metabolic-associated fatty liver disease (MAFLD) has emerged as a leading chronic liver disease. This condition is characterized by an abnormal accumulation of fat within liver and can progress from simple steatosis to more severe stages involving chronic inflammation and oxidative stress. In this study, we investigated the potential therapeutic effects and underlying mechanism of novel bioactive peptides (EWYF and EWFY) on Western diet-induced MAFLD in C57BL/6J mice.
View Article and Find Full Text PDFAuton Neurosci
January 2025
Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address:
During exercise circulatory adjustments to meet oxygen demands are mediated by multiple autonomic mechanisms, the skeletal muscle exercise pressor reflex (EPR), the baroreflex (BR), and by feedforward signals from central command neurons in higher brain centers. Insulin resistance in peripheral tissues includes sensitization of skeletal muscle afferents by hyperinsulinemia which is in part responsible for the abnormally heightened EPR function observed in diabetic animal models and patients. However, the role of insulin signaling within the central nervous system (CNS) is receiving increased attention as a potential therapeutic intervention in diseases with underlying insulin resistance.
View Article and Find Full Text PDFEndocrinol Diabetes Metab Case Rep
January 2025
Summary: A 17-year-old girl presented with recurrent attacks of acute pancreatitis, associated with severe hyperglycemia and hypertriglyceridemia, despite being on intensive insulin therapy for the last 10 years. She had severe acanthosis nigricans, generalized loss of subcutaneous fat and prominent veins over extremities. The serum levels of glucose and triglyceride did not reduce significantly, even with maximally tolerated doses of metformin (2 g), pioglitazone (45 mg) and fenofibrate (160 mg), not uncommonly seen in poor rural families in West Bengal, India.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!