Conductive carbon material-coated Kevlar fibers were fabricated through layer-by-layer spray coating. Polyurethane was used as the interlayer between the Kevlar fiber and carbon materials to bind the carbon materials to the Kevlar fiber. Strongly adhering single-walled carbon nanotube coatings yielded a durable conductivity of 65 S/cm without significant mechanical degradation. In addition, the properties remained stable after bending or water washing cycles. The coated fibers were analyzed using scanning electron microcopy and a knot test. The as-produced fiber had a knot efficiency of 23%, which is more than four times higher than that of carbon fibers. The spray-coating of graphene nanoribbons onto Kevlar fibers was also investigated. These flexible coated-Kevlar fibers have the potential to be used for conductive wires in wearable electronics and battery-heated armors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am201153b | DOI Listing |
Cureus
December 2024
Prosthodontics and Crown and Bridge, The Oxford Dental College, Bengaluru, IND.
Aim To evaluate and compare the fracture toughness and flexural strength of interim fixed partial dentures reinforced with carbon, glass, and Kevlar nanofibers. Materials and methods This study explored the effect of reinforcing poly methyl methacrylate with carbon, glass, and Kevlar fibers on its fracture toughness and flexural strength. A total of 120 samples were prepared, divided into two groups of 60 samples each, with one group tested for fracture toughness and the other for flexural strength.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.
Prog Addit Manuf
May 2024
College of Science and Engineering, University of Galway, Galway, Ireland.
This paper investigates the performance of continuous fibre-reinforced 3D printed components in salt water medium at room temperature. Markforged Mark Two 3D printer was employed to fabricate standard specimens made of Onyx and reinforced Onyx specimens with continuous carbon, high-strength high-temperature glass, and Kevlar fibres. Aging process was conducted to characterize the long-term effect of salt water on the mechanical behaviour of fibre-reinforced 3D printed samples.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Yantai Research Institute, Harbin Engineering University, Yantai 264000, China.
The poor interlaminar fracture toughness is a critical limiting factor for the structural applications of aramid fiber/epoxy resin composites. This study investigates the effects of laser-induced graphene (LIG) and short Kevlar fibers on the interfacial toughness and damage detection of aramid composite materials. Mode II tests and tensile tests were conducted to evaluate mechanical properties and damage detection using the piezoresistive characteristics of LIG.
View Article and Find Full Text PDFHeliyon
October 2024
Portsmouth Centre for Advanced Materials and Manufacturing (PCAMM), School of Electrical and Mechanical Engineering, University of Portsmouth, PO1 3DJ, Hampshire, United Kingdom.
Current research uses a novel recycled milled carbon (rmCF), recycled milled Kevlar (rmKF), and innovative Hybrid fillers (rmHF) of both to increase glass/epoxy composite laminate delamination resistance. This study examines how crack propagation and fibre orientation affect laminated composite delamination fracture toughness. Recycled milled Fillers in the interlayer increase stiffness, delamination resistance, and fracture toughness by increasing the energy needed to crack the interlaminar domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!