Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers.

ACS Appl Mater Interfaces

Department of Chemistry, Rice University, MS 222, 6100 Main Street, Houston, Texas 77005, USA.

Published: January 2012

Conductive carbon material-coated Kevlar fibers were fabricated through layer-by-layer spray coating. Polyurethane was used as the interlayer between the Kevlar fiber and carbon materials to bind the carbon materials to the Kevlar fiber. Strongly adhering single-walled carbon nanotube coatings yielded a durable conductivity of 65 S/cm without significant mechanical degradation. In addition, the properties remained stable after bending or water washing cycles. The coated fibers were analyzed using scanning electron microcopy and a knot test. The as-produced fiber had a knot efficiency of 23%, which is more than four times higher than that of carbon fibers. The spray-coating of graphene nanoribbons onto Kevlar fibers was also investigated. These flexible coated-Kevlar fibers have the potential to be used for conductive wires in wearable electronics and battery-heated armors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am201153bDOI Listing

Publication Analysis

Top Keywords

kevlar fibers
12
carbon nanotube
8
kevlar fiber
8
carbon materials
8
carbon
6
fibers
6
kevlar
5
nanotube graphene
4
graphene nanoribbon-coated
4
nanoribbon-coated conductive
4

Similar Publications

Aim To evaluate and compare the fracture toughness and flexural strength of interim fixed partial dentures reinforced with carbon, glass, and Kevlar nanofibers. Materials and methods This study explored the effect of reinforcing poly methyl methacrylate with carbon, glass, and Kevlar fibers on its fracture toughness and flexural strength. A total of 120 samples were prepared, divided into two groups of 60 samples each, with one group tested for fracture toughness and the other for flexural strength.

View Article and Find Full Text PDF
Article Synopsis
  • Fiber hybridization helps address brittle fractures in composite honeycombs, but different fiber interactions create complex failure mechanisms.
  • Researchers 3D-printed honeycomb composites using carbon and Kevlar fibers to study their structural failure through experiments and simulations.
  • Results showed that carbon/Kevlar composites had the best energy absorption and cost-effectiveness, while CFRP had the highest load capacity; the presence of Kevlar led to ductile failure, contrasting with the brittle failure seen in Onyx honeycombs.
View Article and Find Full Text PDF

This paper investigates the performance of continuous fibre-reinforced 3D printed components in salt water medium at room temperature. Markforged Mark Two 3D printer was employed to fabricate standard specimens made of Onyx and reinforced Onyx specimens with continuous carbon, high-strength high-temperature glass, and Kevlar fibres. Aging process was conducted to characterize the long-term effect of salt water on the mechanical behaviour of fibre-reinforced 3D printed samples.

View Article and Find Full Text PDF

The poor interlaminar fracture toughness is a critical limiting factor for the structural applications of aramid fiber/epoxy resin composites. This study investigates the effects of laser-induced graphene (LIG) and short Kevlar fibers on the interfacial toughness and damage detection of aramid composite materials. Mode II tests and tensile tests were conducted to evaluate mechanical properties and damage detection using the piezoresistive characteristics of LIG.

View Article and Find Full Text PDF

Fabrication and comparison of interlaminar fracture toughness behaviour of glass epoxy composites with recycled milled Kevlar-carbon hybrid fillers.

Heliyon

October 2024

Portsmouth Centre for Advanced Materials and Manufacturing (PCAMM), School of Electrical and Mechanical Engineering, University of Portsmouth, PO1 3DJ, Hampshire, United Kingdom.

Current research uses a novel recycled milled carbon (rmCF), recycled milled Kevlar (rmKF), and innovative Hybrid fillers (rmHF) of both to increase glass/epoxy composite laminate delamination resistance. This study examines how crack propagation and fibre orientation affect laminated composite delamination fracture toughness. Recycled milled Fillers in the interlayer increase stiffness, delamination resistance, and fracture toughness by increasing the energy needed to crack the interlaminar domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!