Mitotic cell division is controlled by cyclin-dependent kinases (Cdks), which phosphorylate hundreds of protein substrates responsible for executing the division program. Cdk inactivation and reversal of Cdk-catalyzed phosphorylation are universal requirements for completing and exiting mitosis and resetting the cell cycle machinery. Mechanisms that define the timing and order of Cdk substrate dephosphorylation remain poorly understood. Cdc14 phosphatases have been implicated in Cdk inactivation and are thought to be generally specific for Cdk-type phosphorylation sites. We show that budding yeast Cdc14 possesses a strong and unusual preference for phosphoserine over phosphothreonine at Pro-directed sites in vitro. Using serine to threonine substitutions in the Cdk consensus sites of the Cdc14 substrate Acm1, we demonstrate that phosphoserine specificity exists in vivo. Furthermore, it appears to be a conserved property of all Cdc14 family phosphatases. An invariant active site residue was identified that sterically restricts phosphothreonine binding and is largely responsible for phosphoserine selectivity. Optimal Cdc14 substrates also possessed a basic residue at the +3 position relative to the phosphoserine, whereas substrates lacking this basic residue were not effectively hydrolyzed. The intrinsic selectivity of Cdc14 may help establish the order of Cdk substrate dephosphorylation during mitotic exit and contribute to roles in other cellular processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265848PMC
http://dx.doi.org/10.1074/jbc.M111.281105DOI Listing

Publication Analysis

Top Keywords

cdc14 phosphatases
8
cdk inactivation
8
order cdk
8
cdk substrate
8
substrate dephosphorylation
8
basic residue
8
cdc14
7
cdk
6
phosphoserine
5
phosphatases preferentially
4

Similar Publications

Decoding the Nucleolar Role in Meiotic Recombination and Cell Cycle Control: Insights into Cdc14 Function.

Int J Mol Sci

November 2024

Instituto de Biología Funcional y Genómica, IBFG, CSIC-USAL, 37007 Salamanca, Spain.

The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it and phosphatases counteracting their activity to maintain balance. The nucleolus, as a biomolecular condensate, plays a key regulatory role by serving as a hub for ribosome biogenesis and the sequestration and release of various cell cycle regulators.

View Article and Find Full Text PDF

Disappearance of Cdc14 from the daughter spindle pole body requires Glc7-Bud14.

Turk J Biol

September 2024

Department of Molecular Biology and Genetics, College of Sciences, Koç University, İstanbul, Turkiye.

Background/aim: The conserved phosphatase Cdc14 facilitates mitotic exit in budding yeast by counteracting mitotic cyclin-dependent kinase activity. Cdc14 is kept in the nucleolus until anaphase onset, when it is released transiently into the nucleoplasm. In late anaphase, Cdc14 is fully released into the cytoplasm upon activation of the mitotic exit network (MEN) to trigger mitotic exit.

View Article and Find Full Text PDF

Cdc14 phosphatases use an intramolecular pseudosubstrate motif to stimulate and regulate catalysis.

J Biol Chem

September 2024

Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA; Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA; Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA. Electronic address:

Cdc14 phosphatases are related structurally and mechanistically to protein tyrosine phosphatases (PTPs) but evolved a unique specificity for phosphoSer-Pro-X-Lys/Arg sites primarily deposited by cyclin-dependent kinases. This specialization is widely conserved in eukaryotes. The evolutionary reconfiguration of the Cdc14 active site to selectively accommodate phosphoSer-Pro likely required modification to the canonical PTP catalytic cycle.

View Article and Find Full Text PDF

The polySUMOylation axis promotes nucleolar release of Tof2 for mitotic exit.

Cell Rep

July 2024

Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA. Electronic address:

In budding yeast, the nucleolus serves as the site to sequester Cdc14, a phosphatase essential for mitotic exit. Nucleolar proteins Tof2, Net1, and Fob1 are required for this sequestration. Although it is known that these nucleolar proteins are SUMOylated, how SUMOylation regulates their activity remains unknown.

View Article and Find Full Text PDF

Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) control protein tyrosine phosphorylation and regulate numerous cellular functions. Dysregulated PTP activity is associated with the onset of multiple human diseases. Nevertheless, understanding of the physiological function and disease biology of most PTPs remains limited, largely due to the lack of PTP-specific chemical probes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!