AI Article Synopsis

  • Familial hemiplegic migraine type II (FHM2) is linked to mutations in the α2-isoform of the Na(+),K(+)-ATPase, impacting its function in neuroglia.
  • Six FHM2 mutations notably hinder the phosphorylation process from ATP, which compromises the pump's efficiency under normal conditions.
  • Specific mutations show distinct mechanisms of dysfunction, including local and long-range structural effects impacting catalytic activity and transition states.

Article Abstract

The neurological disorder familial hemiplegic migraine type II (FHM2) is caused by mutations in the α2-isoform of the Na(+),K(+)-ATPase. We have studied the partial reaction steps of the Na(+),K(+)-pump cycle in nine FHM2 mutants retaining overall activity at a level still compatible with cell growth. Although it is believed that the pathophysiology of FHM2 results from reduced extracellular K(+) clearance and/or changes in Na(+) gradient-dependent transport processes in neuroglia, a reduced affinity for K(+) or Na(+) is not a general finding with the FHM2 mutants. Six of the FHM2 mutations markedly affect the maximal rate of phosphorylation from ATP leading to inhibition by intracellular K(+), thereby likely compromising pump function under physiological conditions. In mutants R593W, V628M, and M731T, the defective phosphorylation is caused by local perturbations within the Rossmann fold, possibly interfering with the bending of the P-domain during phosphoryl transfer. In mutants V138A, T345A, and R834Q, long range effects reaching from as far away as the M2 transmembrane helix perturb the function of the catalytic site. Mutant E700K exhibits a reduced rate of E(2)P dephosphorylation without effect on phosphorylation from ATP. An extremely reduced vanadate affinity of this mutant indicates that the slow dephosphorylation reflects a destabilization of the phosphoryl transition state. This seems to be caused by insertion of the lysine between two other positively charged residues of the Rossmann fold. In mutants R202Q and T263M, effects on the A-domain structure are responsible for a reduced rate of the E(1)P to E(2)P transition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265897PMC
http://dx.doi.org/10.1074/jbc.M111.323022DOI Listing

Publication Analysis

Top Keywords

familial hemiplegic
8
hemiplegic migraine
8
fhm2 mutants
8
phosphorylation atp
8
rossmann fold
8
reduced rate
8
fhm2
5
mutants
5
reduced
5
inhibition phosphorylation
4

Similar Publications

A male in his 20s presented with episodic headache and subsequently developed episodic unilateral weakness, dysphasia and encephalopathy. These paroxysmal episodes persisted over time with the development of background cognitive impairment and neuropsychiatric symptoms. MRI surveillance demonstrated progressive T2 hyperintensity with focal cortical oedema correlating to symptoms observed during clinical episodes.

View Article and Find Full Text PDF

Familial hemiplegic migraine type 2 results from pathogenic variants in the gene, which encodes for a catalytic subunit of sodium/potassium ATPase. This extremely rare autosomal dominant disorder manifests with a spectrum of symptoms, most commonly pure hemiplegic phenotype, epilepsy, and/or intellectual disability. In this study, we detail the clinical features and genetic analysis of nine patients from a large family spanning four generations, with all carrying a previously unreported likely pathogenic variant, p.

View Article and Find Full Text PDF

Hemiplegic Cerebral Palsy (CP) is the most common pediatric motor disability, characterized by unilateral motor weakness. Pediatric Constraint-Induced Movement Therapy (pCIMT) improves affected extremity function but faces variable clinical integration. This study assessed U.

View Article and Find Full Text PDF
Article Synopsis
  • - Familial hemiplegic migraine type 2 (FHM2) is associated with mutations in the Na,K-ATPase α isoform, like G301R, which causes issues in blood flow regulation in the brain by affecting Src kinase signaling.
  • - In a study with mice carrying the G301R mutation, increased cerebral artery tone and exaggerated responses to stimulation were observed; however, treatment with pNaKtide normalized these issues by targeting the problematic signaling pathway.
  • - The treatment with pNaKtide improved cerebral blood flow and neurovascular coupling in the mutant mice, while only slightly affecting blood pressure, indicating it as a promising therapeutic approach for FHM2.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!