Evolutionary transitions between aquatic and terrestrial environments are common in vertebrate evolution. These transitions require major changes in most physiological functions, including feeding. Emydid turtles are ancestrally aquatic, with most species naturally feeding only in water, but some terrestrial species can modulate their feeding behavior appropriately for both media. In addition, many aquatic species can be induced to feed terrestrially. A comparison of feeding in both aquatic and terrestrial environments presents an excellent opportunity to investigate the evolution of terrestrial feeding from aquatic feeding, as well as a system within which to develop methods for studying major evolutionary transitions between environments. Individuals from eight species of emydid turtles (six aquatic, two terrestrial) were filmed while feeding underwater and on land. Bite kinematics were analyzed to determine whether aquatic turtles modulated their feeding behavior in a consistent and appropriate manner between environments. Aquatic turtles showed consistent changes between environments, taking longer bites and using more extensive motions of the jaw and hyoid when feeding on land. However, these motions differ from those shown by species that naturally feed in both environments and mostly do not seem to be appropriate for terrestrial feeding. For example, more extensive motions of the hyoid are only effective during underwater suction feeding. Emydids evolving to feed on land probably would have needed to evolve or learn to overcome many, but not all, aspects of the intrinsic emydid response to terrestrial feeding. Studies that investigate major evolutionary transitions must determine what responses to the new environment are shown by naïve individuals in order to fully understand the evolutionary patterns and processes associated with these transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.060574DOI Listing

Publication Analysis

Top Keywords

terrestrial feeding
20
feeding
14
feeding aquatic
12
aquatic turtles
12
feeding behavior
12
evolutionary transitions
12
aquatic terrestrial
12
terrestrial
9
aquatic
9
evolution terrestrial
8

Similar Publications

In regulatory aquatic risk assessment, toxicokinetic-toxicodynamic (TKTD) methods, such as the generalized unified threshold model of survival (GUTS), are already established and considered ready for use, whereas TKTD methods for aboveground terrestrial species, like arthropods, are less developed and currently not intended for risk assessment. This could be due to the fact that exposure in aboveground terrestrial systems is more event-based (feeding, contact, overspray, etc.), whereas exposure in aquatic systems is simply related to substance concentrations in the surrounding water.

View Article and Find Full Text PDF

How consumer diversity determines consumption efficiency is a central issue in ecology. In the context of predation and biological control, this relationship concerns predator diversity and predation efficiency. Reduced predation efficiency can result from different predator taxa eating each other in addition to their common prey (interference due to intraguild predation).

View Article and Find Full Text PDF

Abstract: Cooperative behaviour is widespread in animals and is likely to be the result of multiple selective pressures. A contentious hypothesis is that helping enhances the probability of obtaining a sexual partner (i.e.

View Article and Find Full Text PDF

The presence of the long-lived radionuclides Cs and Sr in ecosystems is a major environmental concern because bioavailable forms of the radionuclides are readily transferred to living organisms. The present study investigated how holometabolous insect development influences the fate of radiocaesium and radiostrontium by examining the behaviour of tracers (Cs and Sr) and stable elements during the larval feeding stage (21-23 days old), the pupal stage, and the adult stage. We aimed to evaluate the degree to which an herbivore or a detritivore food chain could serve as transfer pathways to higher trophic levels in terms of accumulation potential, and during which stage of development the accumulation potential is highest.

View Article and Find Full Text PDF

Non-native species have higher consumption rates than their native counterparts.

Biol Rev Camb Philos Soc

January 2025

Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil.

Non-native species can be major drivers of ecosystem alteration, especially through changes in trophic interactions. Successful non-native species have been predicted to have greater resource use efficiency relative to trophically analogous native species (the Resource Consumption Hypothesis), but rigorous evidence remains equivocal. Here, we tested this proposition quantitatively in a global meta-analysis of comparative functional response studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!