Comparing the benefits of screening for breast cancer and lung cancer using a novel natural history model.

Cancer Causes Control

Department of Radiology, Stanford School of Medicine, LUCAS Center, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA.

Published: January 2012

To estimate the impact of early detection of cancer, knowledge of how quickly primary tumors grow and at what size they shed lethal metastases is critical. We developed a natural history model of cancer to estimate the probability of disease-specific cure as a function of tumor size, the tumor volume doubling time (TVDT), and disease-specific mortality reduction achievable by screening. The model was applied to non-small-cell lung carcinoma (NSCLC) and invasive ductal carcinoma (IDC), separately. Model parameter estimates were based on Surveillance Epidemiology and End Results (SEER) cancer registry datasets and validated on screening trials. Compared to IDC, NSCLC is estimated to have a lower probability of disease-specific cure at the same detected tumor size, shed lethal metastases at smaller sizes (median: 19 mm for IDC versus 8 mm for NSCLC), have a TVDT that is almost half as long (median: 252 days for IDC versus 134 days for NSCLC). Consequently, NSCLC is associated with a lower mortality reduction from screening at the same screen detection threshold and screening interval. In summary, using a similar natural history model of cancer, we quantify the disease-specific curability attributable to screening for breast cancer, and separately lung cancer, in terms of the TVDT and onset of lethal metastases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146530PMC
http://dx.doi.org/10.1007/s10552-011-9866-9DOI Listing

Publication Analysis

Top Keywords

natural history
12
history model
12
lethal metastases
12
screening breast
8
cancer
8
breast cancer
8
lung cancer
8
size lethal
8
model cancer
8
probability disease-specific
8

Similar Publications

Background: Heterozygous TRPV4 mutations cause a group of skeletal dysplasias characterized by short stature, short trunk, and skeletal deformities.

Objective: The aim of this study is to compare the natural history of clinical and radiologic features of patients with different TRPV4-related skeletal dysplasias.

Materials And Methods: Thirteen patients with a mutation in TRPV4 were included in the study, and 11 were followed for a median of 6.

View Article and Find Full Text PDF

With the global rise in advanced maternal age (AMA) pregnancies, the risk of gestational diabetes mellitus (GDM) increases. However, few GDM prediction models are tailored for AMA women. This study aims to develop a practical risk prediction model for GDM in AMA women.

View Article and Find Full Text PDF

The hoarding behaviour of animals has evolved to reduce starvation risk when food resources are scarce, but effects of food limitation on survival of hoarding animals is poorly understood. Eurasian pygmy owls (Glaucidium passerinum) hoard small mammals and birds in natural cavities and nest boxes in late autumn for later use in the following winter. We studied the relative influence of the food biomass in hoards of pygmy owls on their over-winter and over-summer apparent survival.

View Article and Find Full Text PDF

Background: Even a gross total resection of a benign epidermoid tumor (ET) carries a high risk of recurrence. The management strategy mostly involves redo surgical excision but at a significant cost of morbidity and mortality. The role of adjuvant radiation therapies in this scenario is still undefined.

View Article and Find Full Text PDF

Aromia bungii is an invasive Cerambycidae of major concern at the global scale because of the damage caused to Rosaceae. Given the major phytosanitary relevance of A. bungii, predicting its spread in invaded areas and identifying possible new suitable regions worldwide remains a key action to develop appropriate management practices and optimise monitoring and early detection campaigns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!