Background: Research suggests that yohimbine hydrochloride (YOH), a noradrenaline agonist, can facilitate fear extinction. It is thought that the mechanism of enhanced emotional memory is stimulated through elevated noradrenaline levels. This randomized placebo-controlled trial examined the potential exposure-enhancing effects of YOH in a clinical sample of participants meeting DSM-IV criteria for a specific phobia (fear of flying).

Methods: Sixty-seven participants with fear of flying were randomized to 4 sessions of virtual reality exposure therapy (VRET) combined with YOH (10 mg), or 4 sessions of VRET combined with a placebo. Treatment consisted of 4 weekly 1-hour exposure sessions consisting of two 25-minute virtual flights. At pre- and post- treatment, fear of flying was assessed. The YOH or placebo capsules were administered 1 h prior to exposures. The manipulation of the noradrenaline activity was confirmed by salivary α-amylase (sAA) samples taken pre-, during and post-exposure.

Results: Forty-eight participants completed treatment. Manipulation of noradrenaline levels with YOH was successful, with significantly higher levels of sAA in the YOH group when entering exposure. Results showed that both groups improved significantly from pre- to post-treatment with respect to anxiety reduction. However, although the manipulation of noradrenaline activity was successful, there was no evidence that YOH enhanced outcome.

Conclusions: Participants improved significantly on anxiety measures independently of drug condition, after 4 sessions of VRET. These data do not support the initial findings of exposure-enhancing effects of YOH in this dosage in clinical populations.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000329454DOI Listing

Publication Analysis

Top Keywords

manipulation noradrenaline
12
yohimbine hydrochloride
8
facilitate fear
8
fear extinction
8
virtual reality
8
treatment fear
8
randomized placebo-controlled
8
placebo-controlled trial
8
yoh
8
noradrenaline levels
8

Similar Publications

Noradrenergic inputs from the locus coeruleus to anterior piriform cortex and the olfactory bulb modulate olfactory outputs.

Nat Commun

January 2025

Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Norepinephrine (NE) released from locus coeruleus (LC) noradrenergic (NAergic) neurons plays a pivotal role in the regulation of olfactory behaviors. However, the precise circuits and receptor mechanisms underlying this function are not well understood. Here, in DBH-Cre mice model, we show that LC NAergic neurons project directly to both anterior piriform cortex (aPC) and the olfactory bulb (OB).

View Article and Find Full Text PDF

Transient exposure to ketamine can trigger lasting changes in behavior and mood. We found that brief ketamine exposure causes long-term suppression of futility-induced passivity in larval zebrafish, reversing the "giving-up" response that normally occurs when swimming fails to cause forward movement. Whole-brain imaging revealed that ketamine hyperactivates the norepinephrine-astroglia circuit responsible for passivity.

View Article and Find Full Text PDF

Three experiments with the psychomotor vigilance task examined whether presenting content-free cues, feedback, and points would reduce lapses of sustained attention. In all three experiments, behavioral lapses of attention (particularly slow reaction times) were reduced with the motivation manipulations compared with control conditions, but self-reports of off-task thinking (e.g.

View Article and Find Full Text PDF

Carcinoid crisis is a potentially fatal condition with severe hemodynamic instability. A 25-year-old female with metastatic pancreatic neuroendocrine tumor with recurrent carcinoid crises was posted for surgical debulking. Intraoperatively, the patient was on crisis during manipulation of the lesion by the surgeon, which was unresponsive to octreotide, infusions of phenylephrine, and norepinephrine agents.

View Article and Find Full Text PDF

Task-irrelevant stimuli reliably boost phasic pupil-linked arousal but do not affect decision formation.

Sci Rep

November 2024

Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.

The arousal systems of the brainstem, specifically the locus coeruleus-noradrenaline system, respond "phasically" during decisions. These central arousal transients are accompanied by dilations of the pupil. Mechanistic attempts to understand the impact of phasic arousal on cognition would benefit from temporally precise experimental manipulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!