The Cl(-)/HCO(3)(-) exchanger pendrin (SLC26A4, PDS) and the thiazide-sensitive NaCl cotransporter NCC (SLC12A3) are expressed on the apical membranes of distal nephron segments and mediate salt absorption, with pendrin working in tandem with the epithelial Na channel (ENaC) and NCC working by itself. Pendrin is expressed on the apical membrane of intercalated cells in late distal convoluted tubule (DCT), connecting tubule (CNT) and the cortical collecting duct (CCD) whereas the thiazide-sensitive NaCl cotransporter NCC is primarily detected on the apical membrane of DCT cells. Recent studies indicate that pendrin expression is increased in kidneys of NCC knockout mice, raising the possibility that pendrin and NCC can compensate for loss of the other by increasing their expression and activity. Current investigations in our laboratories demonstrate that pendrin plays an important role in compensatory salt absorption in response to the loop diuretics and the thiazide derivatives. These studies further demonstrate that whereas single deletion of pendrin or NCC does not cause salt wasting in mutant mice under baseline conditions, double knockout of pendrin and NCC causes profound polyuria and polydipsia, along with salt wasting under basal conditions. As a result, animals develop significant dehydration. We propose that pharmacologic inhibition of pendrin and NCC can provide a novel and strong diuretic regimen for patients with fluid overload, including those with congestive heart failure, nephrotic syndrome or renal failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000335117 | DOI Listing |
J Am Soc Nephrol
October 2024
Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California.
Key Points: A K-alkali–enriched diet blunted post-uninephrectomy hypertension and facilitated acid clearance by suppressing Na reabsorption. Uninephrectomy-associated proteinuria could be attributed to elevated single-nephron GFR and downregulation of megalin, which reduced fractional protein endocytosis.
Background: Losing or donating a kidney is associated with risks of developing hypertension and albuminuria.
Clin Kidney J
June 2023
Biogem, Biology and Molecular Genetics Institute, Ariano Irpino (AV), Italy.
Hypertension is one of the major health problems leading to the development of cardiovascular diseases. Despite a rapid expansion in global hypertension prevalence, molecular mechanisms leading to hypertension are not fully understood largely due to the complexity of pathogenesis involving several factors. Salt intake is recognized as a leading determinant of blood pressure, since reduced dietary salt intake is related to lower morbidity and mortality, and hypertension in relation to cardiovascular events.
View Article and Find Full Text PDFBraz J Med Biol Res
February 2023
Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil.
Distal convoluted tubules (DCT), which contain the Na-Cl cotransporter (NCC) inhibited by thiazide diuretics, undergo complex modulation to preserve Na+ and K+ homeostasis. The lysine kinases 1 and 4 (WNK1 and WNK4), identified as hyperactive in the hereditary disease pseudohypoaldosteronism type 2, are responsible for activation of NCC and consequent hypokalemia and hypertension. WNK4, highly expressed in DCT, activates the SPAK/OSR1 kinases, which phosphorylate NCC and other regulatory proteins and transporters in the distal nephron.
View Article and Find Full Text PDFBiosci Rep
November 2022
Department of Biological Sciences, College of Life Science, Institute of Population and Health, Northwest University, Xi'an 710069, China.
Hypertension affects 30% of adults and is the leading risk factor for cardiovascular disease. Kidney sodium reabsorption plays a vital role in the initial stage and development of essential hypertension. It has been extensively reported that the variants of kidney ion handling genes are associated to blood pressure, and clinical features of hypertension.
View Article and Find Full Text PDFKidney360
May 2022
Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia.
Background: Sodium chloride (NaCl) loading and volume expansion suppress the renin-angiotensin-aldosterone system to reduce renal tubular reabsorption of NaCl and water, but effects on the sodium-chloride cotransporter (NCC) and relevant renal transmembrane proteins that are responsible for this modulation in humans are less well investigated.
Methods: We used urinary extracellular vesicles (uEVs) as an indirect readout to assess renal transmembrane proteins involved in NaCl and water homeostasis in 44 patients with hypertension who had repeatedly raised aldosterone/renin ratios undergoing infusion of 2 L of 0.9% saline over 4 hours.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!