It has being shown that glucagon-like peptide-1 (GLP-1), a new anti-diabetes agent, significantly attenuated beta-amyloid (Aβ) levels in rats. In the present study, (Val(8))GLP-1 was used to prevent impairments in memory formation, tau hyperphosphorylation and ultra-structural changes induced by streptozotocin intracerebroventricular (i.c.v.) injection. A spatial water maze task was used to test the rats' learning and memory formation, Western blot was used to measure tau hyperphosphorylation/total tau, and transmission electron microscope was used to find ultra-structural changes. The results shown that streptozotocin induced a series of Alzheimer disease -like changes in behaviour, a significant decline in learning and memory formation, an increased expression of total tau and an increased ratio of phosphorylated tau, and damage to nucleus and nucleolus as seen in electron micrographs. After treatment with (Val(8))GLP-1 (50 μM in 10 μl i.c.v.), there is a significant improvement in learning and memory, a reduction in total tau expression and hyperphosphorylated tau levels, and a recovery of damaged cell nuclei and nucleolus. Our results indicated that (Val(8))GLP-1 might prevent age-related neurodegenerative changes by preventing decline of learning and memory formation, reduction of phosphorylated tau levels and protection of subcellular structures and morphology of neurons. Therefore, (Val(8))GLP-1 is potentially a novel treatment for Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2011.11.005 | DOI Listing |
Gastro Hep Adv
September 2024
Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
Background And Aims: Refractory celiac disease type II (RCDII) is characterized by a clonally expanded aberrant cell population in the small intestine. The role of other tissue-resident immune subsets in RCDII is unknown. Here, we characterized CD8 and CD4 T cells in RCDII duodenum at the single-cell level and .
View Article and Find Full Text PDFGenes Brain Behav
February 2025
Département de Readaptation et gériatrie, University of Geneva, Geneva, Switzerland.
Human microbiota-associated murine models, using fecal microbiota transplantation (FMT) from human donors, help explore the microbiome's role in diseases like Alzheimer's disease (AD). This study examines how gut bacteria from donors with protective factors against AD influence behavior and brain pathology in an AD mouse model. Female 3xTgAD mice received weekly FMT for 2 months from (i) an 80-year-old AD patient (AD-FMT), (ii) a cognitively healthy 73-year-old with the protective APOEe2 allele (APOEe2-FMT), (iii) a 22-year-old healthy donor (Young-FMT), and (iv) untreated mice (Mice-FMT).
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.
Aim: Octopamine in the Drosophila brain has a neuromodulatory role similar to that of noradrenaline in mammals. After release from Tdc2 neurons, octopamine/tyramine may trigger intracellular Ca signaling via adrenoceptor-like receptors on neural cells, modulating neurotransmission. Octopamine/tyramine receptors are expressed in neurons and glia, but how each of these cell types responds to octopamine remains elusive.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA.
Wood formation is the Rosetta stone of tree physiology: a traceable, integrated record of physiological and morphological status. It also produces a large and persistent annual sink for terrestrial carbon, motivating predictive understanding. Xylogenesis studies have greatly expanded our knowledge of the intra-annual controls on wood formation, while dendroecology has quantified the environmental drivers of multi-annual variability.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!