There is widespread interest in circulating tumor cells (CTCs) in blood. Direct detection of CTCs (often < 1/mL) is complicated by a number of factors, but the presence of ∼10(3) to 10(4) copies of target RNA per CTC, coupled with simple enrichments, can greatly increase detection capability. In this study we used resonance frequency shifts induced by mass-amplifying gold nanoparticles to detect a hybridization sandwich bound to functionalized nanowires. We selected PCA3 RNA as a marker for prostate cancer, optimized antisense binding sites, and defined conditions allowing single nucleotide mismatch discrimination, and used a hybrid resonator integration scheme, which combines elements of top-down fabrication with strengths of bottom-up fabrication, with a view to enable multiplexed sensing. Bound mass calculated from frequency shifts matched mass estimated by counting gold nanoparticles. This represents the first demonstration of use of such nanoresonators, which show promise of both excellent specificity and quantitative sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290699PMC
http://dx.doi.org/10.1016/j.nano.2011.11.009DOI Listing

Publication Analysis

Top Keywords

circulating tumor
8
tumor cells
8
prostate cancer
8
frequency shifts
8
gold nanoparticles
8
nanoresonator chip-based
4
chip-based rna
4
rna sensor
4
sensor strategy
4
strategy detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!