The tradeoffs between the regulation of soil erosion, provision of fresh water, and climate regulation associated with new Pinus radiata forests in New Zealand are explored using national models. These three ecosystem services for which there is strong demand are monetised as commodities (avoided soil erosion is NZ $1 per tonne; water is NZ $1 per cubic metre; and sequestered carbon is assumed to be NZ $73 per tonne). This permits their summation on a spatial basis to produce a national map of the net benefit of these ecosystem services. Net benefit is spatially variable depending primarily on the relative mix of forest growth rates and demand for irrigation water. New P. radiata forests (once mature) generally reduce mass-movement erosion by an order of magnitude. This provides significant benefits for erosion control where there are high natural rates of erosion. Benefits are especially large in catchments where high sedimentation is increasing flood risk and degrading aquatic ecosystems. The generally high growth rates of P. radiata in New Zealand (8.5 tonnesCha(-1)yr(-1) on average for existing forest) add significant environmental benefits of carbon sinks to climate regulation. However, the reduction of water yield associated with new forests (between 30% and 50%) can neutralise these benefits in catchments where there is demand for irrigation water, such as the eastern foothills of the Southern Alps and the tussock grasslands in the South Island.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2011.09.019 | DOI Listing |
Environ Res
January 2025
State Key Laboratory of Continental Dynamics, Northwest University, Xi'an, 710069, China.
Addressing loess salinisation is a crucial element in preserving ecological stability and fostering sustainable development in the northwest Loess Plateau. To investigate the impacts of salt solution on the properties of loess, independently designed salt solution-loess dynamic cyclic erosion equipment was used to soak the loess. Then, numerous tests were performed to analyse the variability of the effects of salt solution concentrations (SSC) and type, as well as the duration of soaking time, on these physico-mechanical properties.
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
Natural processes, combined with human activities, determine the inherent quality of regional water supply and demand. However, the interaction between artificial vegetation restoration and water supply-demand dynamics remains insufficiently understood, particularly in arid and semi-arid regions. This study focuses on the Jinghe River Basin (JRB) in the central Loess Plateau, aiming to investigate the changes in supply and demand of ecosystem water yield services and analyze factors affecting the water supply-demand relationship during the vegetation restoration, using the InVEST model, scenario analysis, and the Geodetector.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Civil Engineering, National Institute of Technology Warangal, Warangal, 506004, India.
Granite sludge dust (GSD), a significant byproduct of granite processing globally, poses severe environmental and public health challenges, with India alone generating 200 million tons annually. The conventional use of GSD in soil stabilization and construction materials is limited to 20-30%, underscoring the urgent need for sustainable repurposing solutions within the circular economy catering to broader bulk utilization. Unlike traditional techniques, repurposing granite dust using microbially induced calcite precipitation (MICP) offers a sustainable low-impact and eco-friendly ground improvement solution.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road, Haidian District, 100083, Beijing, People's Republic of China.
Limiting adverse consequences of mining activities requires ecosystem restoration efforts, whose arrangement around mining areas is poorly designed. It is unclear, however, where best to locate ecological projects to enhance ecosystem services cost-effectively. To answer this question, we conducted an optimized ecological restoration project planning by the Resource Investment Optimization System (RIOS) model to identify the restoration priority areas in the Pingshuo Opencast Coal Mine region in Shanxi Province.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, and College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:
Soil cadmium (Cd) pollution poses a significant environmental threat, impacting global food security and human health. Recent studies have highlighted the potential of arbuscular mycorrhizal (AM) fungi to protect crops from various heavy metal stresses, including Cd toxicity. To elucidate the tolerance mechanisms of maize in response to Cd toxicity under AM symbiosis, this study used two maize genotypes with contrasting Cd tolerance: Zhengdan958 (Cd-tolerant) and Zhongke11 (Cd-sensitive).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!