Platinum anticancer drugs. From serendipity to rational design.

Ann Pharm Fr

Institut Curie, 26, rue d'Ulm, 75248 Paris cedex 05, France.

Published: November 2011

The discovery of cis-platin was serendipitous. In 1965, Rosenberg was looking into the effects of an electric field on the growth of Escherichia coli bacteria. He noticed that bacteria ceased to divide when placed in an electric field but what Rosenberg also observed was a 300-fold increase in the size of the bacteria. He attributed this to the fact that somehow the platinum-conducting plates were inducing cell growth but inhibiting cell division. It was later deduced that the platinum species responsible for this was cis-platin. Rosenberg hypothesized that if cis-platin could inhibit bacterial cell division it could also stop tumor cell growth. This conjecture has proven correct and has led to the introduction of cis-platin in cancer therapy. Indeed, in 1978, six years after clinical trials conducted by the NCI and Bristol-Myers-Squibb, the U.S. Food and Drug Administration (FDA) approved cis-platin under the name of Platinol(®) for treating patients with metastatic testicular or ovarian cancer in combination with other drugs but also for treating bladder cancer. Bristol-Myers Squibb also licensed carboplatin, a second-generation platinum drug with fewer side effects, in 1979. Carboplatin entered the U.S. market as Paraplatin(®) in 1989 for initial treatment of advanced ovarian cancer in established combination with other approved chemotherapeutic agents. Numerous platin derivatives have been further developed with more or less success and the third derivative to be approved in 1994 was oxaliplatin under the name of Eloxatin(®). It was the first platin-based drug to be active against metastatic colorectal cancer in combination with fluorouracil and folinic acid. The two others platin-based drugs to be approved were nedaplatin (Aqupla(®)) in Japan and lobaplatin in China, respectively. More recently, a strategy to overcome resistance due to interaction with thiol-containing molecules led to the synthesis of picoplatin in which one of the amines linked to Pt was replaced by a bulky methyl substituted pyridine allowing the drug more time to reach its target, DNA. On the other hand, efforts which were made to find new orally administered analog led to satraplatin bearing to axial acetate groups. Both drugs are still under clinical trials. An alternatively route to the discovery of new derivatives turns to the development of improved delivery strategies such as liposomes and polymers. Liposomal cis-platin or lipoplatin in under a phase III randomized clinical trial for patients suffering from small cell lung cancer whereas polymer-based drug, Prolindac™ is currently under investigation for pretreated ovarian cancers in up to eight European centers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharma.2011.10.001DOI Listing

Publication Analysis

Top Keywords

electric field
8
cell growth
8
cell division
8
clinical trials
8
ovarian cancer
8
cancer combination
8
cis-platin
6
cancer
6
cell
5
drug
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!