A focus on pair bonds between males and females is fundamental to study the evolution of social organization. Because pair bonds are generally identified from direct observations of pairs that maintain physical proximity, pair bonds may have been overlooked in animals that do not exhibit such visible pairs. The Lake Tanganyika cichlid fish Xenotilapia rotundiventralis forms schools that consist of mouthbrooding and non-brooding adults in mid-water, and visible pairs are not recognized. A previous study suggested that mouthbrooding females transfer fractions of the young to males when the young become large. However, it remains a mystery whether the mating pairs maintain pair bonds so that the females can transfer the young to their mates. To answer this question, we conducted a parentage analysis using 10 microsatellite markers. The analysis showed that the mouthbrooding adults were most likely genetic fathers and mothers of the young in their mouths. This finding suggests that the female-to-male shift of young takes place between mating partners, and thus the mating pairs maintain pair bonds at least until the shift of young. The present study is the first to detect pair bonds in animals in which physical proximity has not been observed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367736 | PMC |
http://dx.doi.org/10.1098/rsbl.2011.1006 | DOI Listing |
Org Lett
January 2025
Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States.
We present the serendipitous discovery of an unusual dimer formed from anthracene-derived polyarenes. Unlike the typical oxidative coupling of substituted aromatic scaffolds, the reaction yielded a dearomatized enone dimer as the sole product. This dearomatized motif, notably, does not undergo the commonly observed rearomatization, and no biaryl products were detected.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Jakkur P.O. 560064, India.
Seeking new and efficient thermoelectric materials requires a detailed comprehension of chemical bonding and structure in solids at microscopic levels, which dictates their intriguing physical and chemical properties. Herein, we investigate the influence of local structural distortion on the thermoelectric properties of TlCuS, a layered metal sulfide featuring edge-shared Cu-S tetrahedra within CuS layers. While powder X-ray diffraction suggests average crystallographic symmetry with no distortion in CuS tetrahedra, the synchrotron X-ray pair distribution function experiment exposes concealed local symmetry breaking, with dynamic off-centering distortions of the CuS tetrahedra.
View Article and Find Full Text PDFbioRxiv
December 2024
Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK.
Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
Carbonless DNA was designed by replacing all carbon atoms in the standard DNA building blocks with boron and nitrogen, ensuring isoelectronicity. Electronic structure quantum chemistry methods (DFT(ωB97XD)/aug-cc-pVDZ) were employed to study both the individual building blocks and the larger carbon-free DNA fragments. The reliability of the results was validated by comparing selected structures and binding energies using more accurate methods such as MP2, CCSD, and SAPT2+3(CCD)δ.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Organic Chemistry, University Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
In ion-pair catalysis, the last intermediate structures prior to the stereoselective transition states are of special importance for predictive models due to the high isomerization barrier between - and -substrate double bonds connecting ground and transition state energies. However, in prior experimental investigations of chiral phosphoric acids (CPA) solely the early intermediates could be investigated while the key intermediate remained elusive. In this study, the first experimental structural and conformational insights into ternary complexes with CPAs are presented using a special combination of low temperature and relaxation optimized N HSQC-NOESY NMR spectroscopy to enhance sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!