The 21st century has seen an explosion of new high-throughput data from transcriptomic and proteomic studies. These data are highly relevant to the design and interpretation of modern physiological studies but are not always readily accessible to potential users in user-friendly, searchable formats. Data from our own studies involving transcriptomic and proteomic profiling of renal tubule epithelia have been made available on a variety of online databases. Here, we provide a roadmap to these databases and illustrate how they may be useful in the design and interpretation of physiological studies. The databases can be accessed through http://helixweb.nih.gov/ESBL/Database.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289419 | PMC |
http://dx.doi.org/10.1152/ajprenal.00457.2011 | DOI Listing |
Sci Transl Med
January 2025
Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322.
Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Agriculture, Agricultural University of Hunan, Changsha, China.
Introduction: Heavy metal soil pollution is a global issue that can be efficiently tackled through the process of phytoremediation. The use of rapeseed in the phytoremediation of heavy metal-contaminated agricultural land shows great potential. Nevertheless, its ability to tolerate heavy metal stress at the molecular level remains unclear.
View Article and Find Full Text PDFHeliyon
January 2025
Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou, Guangdong, 510663, China.
Spondyloarthritis is a prevalent and persistent condition that significantly impacts the quality of life. Its intricate pathological mechanisms have led to a scarcity of animal models capable of replicating the disease progression in humans, making it a prominent area of research interest in the field. To delve into the pathological and physiological traits of spontaneous non-human primate spondyloarthritis, this study meticulously examined the disease features of this natural disease model through an array of techniques including X-ray imaging, MRI imaging, blood biochemistry, markers of bone metabolism, transcriptomics, proteomics, and metabolomics.
View Article and Find Full Text PDFAntigen processing and presentation via major histocompatibility complex (MHC) molecules are central to immune surveillance. Yet, quantifying the dynamic activity of MHC class I and II antigen presentation remains a critical challenge, particularly in diseases like cancer, infection and autoimmunity where these pathways are often disrupted. Current methods fall short in providing precise, sample-specific insights into antigen presentation, limiting our understanding of immune evasion and therapeutic responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!