Oscillatory activity is modulated by sensory stimulation but can also fluctuate in the absence of sensory input. Recent studies have demonstrated that such fluctuations of oscillatory activity can have substantial influence on the perception of subsequent stimuli. In the present study, we employed a simultaneity task in the somatosensory domain to study the role of prestimulus oscillatory activity on the temporal perception of 2 events. Subjects received electrical stimulations of the left and right index finger with varying stimulus onset asynchronies (SOAs) and reported their subjective perception of simultaneity, while brain activity was recorded with magnetoencephalography. With intermediate SOAs (30 and 45 ms), subjects frequently misperceived the stimulation as simultaneously. We compared neuronal oscillatory power in these conditions and found that power in the high beta band (∼20 to 40 Hz) in primary and secondary somatosensory cortex prior to the electrical stimulation predicted subjects' reports of simultaneity. Additionally, prestimulus alpha-band power influenced perception in the condition SOA 45 ms. Our results indicate that fluctuations of ongoing oscillatory activity in the beta and alpha bands shape subjective perception of physically identical stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705338 | PMC |
http://dx.doi.org/10.1093/cercor/bhr329 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!