The effects of the dye-adsorption solvent on the performances of the dye-sensitized solar cells (DSSCs) based on black dye have been investigated. The highest conversion efficiency (10.6 %) was obtained in the cases for which 1-PrOH and the mixed solvent of EtOH and tBuOH (3:1 v/v) were employed as dye-adsorption solvents. The optimized value for the dielectric constant of the dye-adsorption solvent was found to be around 20. The DSSCs that used MeOH as a dye-adsorption solvent showed inferior solar-cell performance relative to the DSSCs that used EtOH, 1-PrOH, 2-PrOH, and 1-BuOH. Photo- and electrochemical measurements of black dye both in solution and adsorbed onto the TiO(2) surface revealed that black dye aggregates at the TiO(2) surface during the adsorption process in the case for MeOH. Both the shorter electron lifetime in the TiO(2) photoelectrode and the greater resistance in the TiO(2)-dye-elecrolyte interface, attributed to the dye aggregation at the TiO(2) surface, cause the decrease in the solar-cell performance of the DSSC that used MeOH as a dye adsorption solvent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.201100484 | DOI Listing |
Int J Biol Macromol
January 2025
School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia.
Int J Biol Macromol
December 2024
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada. Electronic address:
Synthetic dye production and the consequent generation of dye-rich wastewater are major concerns of water quality in many countries. We developed a sustainable approach with deep eutectic solvent (DES) treatment to enhance the efficiency of mixed cellulose ester (MCE) membrane-based dye removal material. The DES composition and treatment conditions were optimized, and the treated membranes were comprehensively characterized.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Textile Science and Technology, Jiangnan University 1800 Lihu Avenue, Wuxi 214122, China.
Aluminum oxide clusters (AlOCs) possess high surface areas and customizable pore structures, making them applicable in the field of environmental remediation. However, their practical use is hindered by stability issues, aggregation tendencies, and recycling challenges. This study presents an in -situ synthesis of AlOCs on cellulose using a solvent thermal method.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea. Electronic address:
Lignin nanoparticles (LNPs) exhibit application potential in fields such as ultraviolet (UV) shielding, antioxidant materials, and water purification owing to their versatile chemical structure. However effective, nontoxic solvent-based strategies to synthesize LNPs with diverse morphologies have not been reported. This study presents a continuous biorefinery method to produce monodisperse LNPs with diverse morphologies from isopropanol-solubilized lignin (IPA-lignin).
View Article and Find Full Text PDFRSC Adv
November 2024
Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
The deployment of magnetically responsive and polymeric materials to remove dyes that are hazardous in aquatic environments has profoundly revolutionized environmental sustainability. This study focuses on removing the hazardous cationic Malachite Green (MG) dye from solutions, employing a novel magnetic composite film as an adsorbent, designated as AgCo FeO (ACFCeP). The composite was synthesized solvent casting, incorporating AgCo FeO nanoparticles and CeO into a cellulose acetate/polyvinylpyrrolidone (CA/PVP) polymer matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!