Higher plants and cyanobacteria metabolize sucrose (Suc) by a similar set of enzymes. Suc synthase (SuS, A/UDP-glucose: D: -fructose 2-α-D: -glucosyl transferase) catalyzes a reversible reaction. However, it is in the cleavage of Suc that this enzyme plays an important role in vivo, providing sugar nucleotides for polysaccharide biosynthesis. In cyanobacteria, SuS occurrence has been reported in heterocyst-forming strains, where it was shown to be involved also in nitrogen fixation. We investigated the presence of sequences homologous to SuS-encoding genes (sus) in recently sequenced cyanobacterial genomes. In this work, we show for the first time the presence of SuS in unicellular cyanobacterium strains (Microcystis aeruginosa PCC 7806, Gloebacter violaceus PCC 7421, and Thermosynechococcus elongatus BP-1). After functional characterization of SuS encoding genes, we demonstrated an increase in their transcript levels after a salt treatment or hypoxic stress in M. aeruginosa and G. violaceus cells. Based on phylogenetic analysis and on the presence of sus homologs in the most recently radiated cyanobacterium strains, we propose that sus genes in unicellular cyanobacteria may have been acquired through horizontal gene transfer. Taken together, our data indicate that SuS acquisition by cyanobacteria might be related to open up new ecological niches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-011-1542-5 | DOI Listing |
Metab Eng
January 2025
Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden. Electronic address:
Acetate is a biological anion with many applications in the chemical and food industries. In addition to being a common microbial fermentative end-product, acetate can be produced by photosynthetic cyanobacteria from CO using solar energy. Using wild-type cells of the unicellular model cyanobacterium Synechocystis PCC 6803 only low levels of acetate are observed outside the cells.
View Article and Find Full Text PDFActa Biochim Pol
January 2025
School of Food and Bioengineering, Chengdu University, Chengdu, China.
Members of the families Thermosynechococcaceae and Thermostichaceae are well-known unicellular thermophilic cyanobacteria and a non-thermophilic genus was newly classified into the former. Analysis of the codon usage bias (CUB) of cyanobacterial species inhabiting different thermal and non-thermal niches will benefit the understanding of their genetic and evolutionary characteristics. Herein, the CUB and codon context patterns of protein-coding genes were systematically analyzed and compared between members of the two families.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
Glutathione S-transferases (GSTs) are evolutionarily conserved enzymes crucial for cell detoxication. They are viewed as having evolved in cyanobacteria, the ancient photosynthetic prokaryotes that colonize our planet and play a crucial role for its biosphere. Xi-class GSTs, characterized by their specific glutathionyl-hydroquinone reductase activity, have been observed in prokaryotes, fungi and plants, but have not yet been studied in cyanobacteria.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany. Electronic address:
Hydrogenases are key enzymes forming or consuming hydrogen. The inactivation of these transition metal biocatalysts with oxygen limits their biotechnological applications. Oxygen-sensitive hydrogenases are distinguished from oxygen-insensitive (tolerant) ones by their initial hydrogen turnover rates influenced by oxygen.
View Article and Find Full Text PDFMicrobiol Res
March 2025
State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!