Purification of multiprotein histone acetyltransferase complexes.

Methods Mol Biol

Department of Biochemistry, University of California, Riverside, CA, USA.

Published: March 2012

The reversible acetylation of specific lysine residues on core histones regulates gene transcription in eukaryotes. Since the discovery of GCN5 as the first transcription-regulating histone acetyltransferase (HAT), a variety of HATs have now been identified and shown to acetylate different sites on histones as well as on non-histone proteins, including transcription regulators. In general, purified recombinant HATs expressed in bacteria or in insect cells are able to acetylate free histones and sometimes other substrates in vitro. However, such activity is often restricted to certain substrates and/or is very weak on physiological substrates, such as nucleosomes. Moreover, it does not reflect the actual scenario inside the cell, where HATs generally associate with other proteins to form stable multisubunit complexes. Importantly, these peripheral proteins significantly influence the functions of the catalytic HAT subunit by regulating its intrinsic catalytic activity and/or by modulating its target substrate selectivity. In this chapter, we describe detailed methods for the rapid (two step) and efficient purification of large, multiprotein HAT complexes from nuclear extracts of mammalian epitope-tagged cell lines, including protocols for the generation and large-scale suspension culture of these cell lines. These methods have been used to purify and characterize different human GCN5 HAT complexes that retain activity toward their physiological substrates in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757495PMC
http://dx.doi.org/10.1007/978-1-61779-376-9_28DOI Listing

Publication Analysis

Top Keywords

histone acetyltransferase
8
substrates vitro
8
physiological substrates
8
hat complexes
8
cell lines
8
purification multiprotein
4
multiprotein histone
4
complexes
4
acetyltransferase complexes
4
complexes reversible
4

Similar Publications

Transcription activators are said to stimulate gene expression by 'recruiting' coactivators, yet this vague term fits multiple kinetic models. To directly analyze the dynamics of activator-coactivator interactions, single-molecule microscopy was used to image promoter DNA, a transcription activator and the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex within yeast nuclear extract. SAGA readily but transiently binds nucleosome-free DNA without an activator, while chromatin association occurs primarily when an activator is present.

View Article and Find Full Text PDF

This study aimed to investigate the polymorphisms of circadian clock genes and the association of shift work and gene polymorphisms with hypertension in healthcare workers. This study recruited 222 healthcare workers, of whom 76 had primary hypertension (Hyp group) and 146 served as controls (Control group). General information and working hours were collected through questionnaires.

View Article and Find Full Text PDF

[Berberine regulates glucose and lipid metabolism via clock-controlled genes to ameliorate insulin resistance of hepatocytes].

Zhongguo Zhong Yao Za Zhi

December 2024

Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004,China.

This study aims to investigate the mechanism of berberine in regulating the metabolism network via clock-controlled genes represented by brain and muscle arnt-like 1(BMAL1) to ameliorate insulin resistance(IR) of hepatocytes in vitro. The HepG2 cell model of dexamethasone-induced IR(IR-HepG2) was established and treated with 5, 10, and 20 μmol·L~(-1) berberine, respectively, for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) assay were employed to measure extracellular glucose concentration and cell viability, respectively.

View Article and Find Full Text PDF

The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.

View Article and Find Full Text PDF

High levels of histone acetylation modifications promote the formation of PGCs.

Poult Sci

January 2025

College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China. Electronic address:

This study investigates the role of histone acetylation in the differentiation of chicken embryonic stem cells (ESCs) into primordial germ cells (PGCs). Transcriptomic sequencing was used to analyze differentially expressed genes during this differentiation process, with functional annotation identifying genes associated with histone acetylation. To explore the role of acetylation, acetate and an acetyltransferase inhibitor (ANAC) were added to the ESCs induction medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!