Individual variation in reward sensitivity may have an important role in early substance use and subsequent development of substance abuse. This may be especially important during adolescence, a transition period marked by approach behavior and a propensity toward risk taking, novelty seeking and alteration of the social landscape. However, little is known about the relative contribution of personality, behavior, and brain responses for prediction of alcohol use in adolescents. In this study, we applied factor analyses and structural equation modeling to reward-related brain responses assessed by functional magnetic resonance imaging during a monetary incentive delay task. In addition, novelty seeking, sensation seeking, impulsivity, extraversion, and behavioral measures of risk taking were entered as predictors of early onset of drinking in a sample of 14-year-old healthy adolescents (N=324). Reward-associated behavior, personality, and brain responses all contributed to alcohol intake with personality explaining a higher proportion of the variance than behavior and brain responses. When only the ventral striatum was used, a small non-significant contribution to the prediction of early alcohol use was found. These data suggest that the role of reward-related brain activation may be more important in addiction than initiation of early drinking, where personality traits and reward-related behaviors were more significant. With up to 26% of explained variance, the interrelation of reward-related personality traits, behavior, and neural response patterns may convey risk for later alcohol abuse in adolescence, and thus may be identified as a vulnerability factor for the development of substance use disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280646 | PMC |
http://dx.doi.org/10.1038/npp.2011.282 | DOI Listing |
Histol Histopathol
January 2025
Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Jiangsu, PR China.
Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.
View Article and Find Full Text PDFTrends Hear
January 2025
Bionics Institute, East Melbourne, VIC, Australia.
This study used functional near-infrared spectroscopy (fNIRS) to measure aspects of the speech discrimination ability of sleeping infants. We examined the morphology of the fNIRS response to three different speech contrasts, namely "Tea/Ba," "Bee/Ba," and "Ga/Ba." Sixteen infants aged between 3 and 13 months old were included in this study and their fNIRS data were recorded during natural sleep.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Background: Leukocytes play an important role in inflammatory response after a traumatic brain injury (TBI). We designed this study to identify TBI phenotypes by clustering blood levels of various leukocytes.
Methods: TBI patients from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were included.
BMJ Neurol Open
January 2025
Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan.
Objective: This study investigated the effects of early treatment and pathophysiology on eosinophilic granulomatosis with polyangiitis neuropathy (EGPA-N).
Methods: Twenty-six consecutive patients with EGPA-N were diagnosed and treated within a day of admission and underwent clinical analysis. Peripheral nerve recovery rates were evaluated after early treatment by identifying the damaged peripheral nerve through detailed neurological findings.
Front Pharmacol
January 2025
Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
Background: Migraine represents a chronic neurological disorder characterized by high prevalence, substantial disability rates, and significant economic burden. Its pathogenesis is complex, and there is currently no cure. The rapid progress in multi-omics technologies has provided new tools to uncover the intricate pathological mechanisms underlying migraine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!