Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electronic structure calculations of microhydrated model chromophores (in their deprotonated anionic forms) of the photoactive yellow and green fluorescent proteins (PYP and GFP) are reported. Electron-detachment and excitation energies as well as binding energies of mono- and dihydrated isomers are computed and analyzed. Microhydration has different effects on the excited and ionized states. In lower-energy planar isomers, the interaction with one water molecule blueshifts the excitation energies by 0.1-0.2 eV, whereas the detachment energies increase by 0.4-0.8 eV. The important consequence is that microhydration by just one water molecule converts the resonance (autoionizing) excited states of the bare chromophores into bound states. In the lower-energy microhydrated clusters, interactions with water have negligible effect on the chromophore geometry; however, we also identified higher-energy dihydrated clusters of PYP in which two water molecules form hydrogen-bonding network connecting the carboxylate and phenolate moieties and the chromophore is strongly distorted resulting in a significant shift of excitation energies (up to 0.6 eV).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3660350 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!