First-in-human dose-selection criteria for biotherapeutics are changing, primarily based on severe adverse events in a single monoclonal antibody trial in healthy volunteers. Spurred by new EMA guidance, the minimum anticipated biological-effect level (MABEL) for estimating a starting human dose from exposure-response preclinical data have been introduced and should help to create long overdue target mechanism-based models focused on exposure-response relationships. Even though clarity of its application is still developing, this has the potential to become the model for most biotherapeutics in the future. However, maximizing benefit from MABEL will require increased efforts to define and create assays for relevant biomarkers of biological activity and safety as pharmacodynamic end points. Currently, this has not been realized sufficiently to make the model applicable to a majority of biotherapeutics; however, this review suggests how it can be applied universally with monoclonal antibodies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1586/ecp.10.5 | DOI Listing |
J Allergy Clin Immunol
January 2025
National Heart and Lung Institute, Imperial College London, London, United Kingdom. Electronic address:
Background: Peanut allergy (PA) is one of the most prevalent food allergies with a lack of favorable safety/efficacy treatment. A cucumber mosaic virus-like particle expressing peanut allergen component Ara h 2 (VLP Peanut) has been developed as a novel therapeutic approach for PA.
Objective: We assessed the tolerogenic properties and reactivity of VLP Peanut.
Epigenetics Chromatin
January 2025
Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.
Despite significant advances in HIV treatment, a definitive cure remains elusive. The first-in-human clinical trial of Excision BioTherapeutics' CRISPR-based HIV cure, EBT-101, demonstrated safety but failed to prevent viral rebound. These outcomes may result from the interplay of several factors.
View Article and Find Full Text PDFNat Commun
January 2025
Grid Therapeutics, Durham, NC, USA.
GT103 is a first-in-class, fully human, IgG3 monoclonal antibody targeting complement factor H that kills tumor cells and promotes anti-cancer immunity in preclinical models. We conducted a first-in-human phase 1b study dose escalation trial of GT103 in refractory non-small cell lung cancer to assess the safety of GT103 (NCT04314089). Dose escalation was performed using a "3 + 3" schema with primary objectives of determining safety, tolerability, PK profile and maximum tolerated dose (MTD) of GT103.
View Article and Find Full Text PDFNature
December 2024
CatalYm, Munich, Germany.
Cancer immunotherapies with antibodies blocking immune checkpoint molecules are clinically active across multiple cancer entities and have markedly improved cancer treatment. Yet, response rates are still limited, and tumour progression commonly occurs. Soluble and cell-bound factors in the tumour microenvironment negatively affect cancer immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!