The fungal pathogen Candida albicans is a common cause of opportunistic infections in humans. We report that wild-type Drosophila melanogaster (OrR) flies are susceptible to virulent C. albicans infections and have established experimental conditions that enable OrR flies to serve as model hosts for studying C. albicans virulence. After injection into the thorax, wild-type C. albicans cells disseminate and invade tissues throughout the fly, leading to lethality. Similar to results obtained monitoring systemic infections in mice, well-characterized cph1Δ efg1Δ and csh3Δ fungal mutants exhibit attenuated virulence in flies. Using the OrR fly host model, we assessed the virulence of C. albicans strains individually lacking functional components of the SPS sensing pathway. In response to extracellular amino acids, the plasma membrane localized SPS-sensor (Ssy1, Ptr3, and Ssy5) activates two transcription factors (Stp1 and Stp2) to differentially control two distinct modes of nitrogen acquisition (host protein catabolism and amino acid uptake, respectively). Our results indicate that a functional SPS-sensor and Stp1 controlled genes required for host protein catabolism and utilization, including the major secreted aspartyl protease SAP2, are required to establish virulent infections. By contrast, Stp2, which activates genes required for amino acid uptake, is dispensable for virulence. These results indicate that nutrient availability within infected hosts directly influences C. albicans virulence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215725PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027434PLOS

Publication Analysis

Top Keywords

wild-type drosophila
8
drosophila melanogaster
8
candida albicans
8
orr flies
8
albicans virulence
8
host protein
8
protein catabolism
8
amino acid
8
acid uptake
8
genes required
8

Similar Publications

Glucose-6-Phosphatase (G6Pase), a key enzyme in gluconeogenesis and glycogenolysis in the mammalian liver and kidney, converts glucose-6-phosphate to glucose for maintaining systemic blood glucose homeostasis during nutrient deprivation. However, its function has remained elusive in insects, which have no need for G6Pase in sugar homeostasis since they convert glucose-6-phosphate to trehalose, their main circulating sugar, via trehalose phosphate synthase (TPS1). In this study we identify an unexpected and essential requirement for G6Pase in male fertility, specifically to produce motile sperm.

View Article and Find Full Text PDF

While Drosophila melanogaster serves as a crucial model for investigating both the circadian clock and gut microbiome, our understanding of their relationship in this organism is still limited. Recent analyses suggested that the Drosophila gut microbiome modulates the host circadian transcriptome to minimize rapid oscillations in response to changing environments. Here, we examined the composition and abundance of the gut microbiota in wild-type and arrhythmic per flies, under 12 h:12 h light: dark (12:12 LD) and constant darkness (DD) conditions.

View Article and Find Full Text PDF

We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes.

View Article and Find Full Text PDF

SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction.

Transl Neurodegener

December 2024

Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China.

Background: Neurological complications are a significant concern of Coronavirus Disease 2019 (COVID-19). However, the pathogenic mechanism of neurological symptoms associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is poorly understood.

Methods: We used Drosophila as a model to systematically analyze SARS-CoV-2 genes encoding structural and accessory proteins and identified the membrane protein (M) that disrupted mitochondrial functions in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Dentatorubral-pallidoluysian atrophy (DRPLA) is a neurodegenerative disease characterized by symptoms like ataxia, dementia, and epilepsy, caused by an expansion of CAG repeats in the ATROPHIN 1 (ATN1) gene.
  • Researchers developed Drosophila (fruit fly) models that express either normal ATN1 (Q7) or a pathogenic version with expanded repeats (Q88), revealing that the pathogenic variant significantly reduces fly motility, lifespan, and affects internal structures more severely than the normal version.
  • RNA sequencing identified pathways related to protein quality control that are altered by pathogenic ATN1, and subsequent genetic experiments highlighted the
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!