Background: MicroRNAs (miRNAs) are a set of short (19∼24 nt) non-coding RNAs that play significant roles as posttranscriptional regulators in animals and plants. The ab initio prediction methods show excellent performance for discovering new pre-miRNAs. While most of these methods can distinguish real pre-miRNAs from pseudo pre-miRNAs, few can predict the positions of miRNAs. Among the existing methods that can also predict the miRNA positions, most of them are designed for mammalian miRNAs, including human and mouse. Minority of methods can predict the positions of plant miRNAs. Accurate prediction of the miRNA positions remains a challenge, especially for plant miRNAs. This motivates us to develop MaturePred, a machine learning method based on support vector machine, to predict the positions of plant miRNAs for the new plant pre-miRNA candidates.
Methodology/principal Findings: A miRNA:miRNA* duplex is regarded as a whole to capture the binding characteristics of miRNAs. We extract the position-specific features, the energy related features, the structure related features, and stability related features from real/pseudo miRNA:miRNA* duplexes. A set of informative features are selected to improve the prediction accuracy. Two-stage sample selection algorithm is proposed to combat the serious imbalance problem between real and pseudo miRNA:miRNA* duplexes. The prediction method, MaturePred, can accurately predict plant miRNAs and achieve higher prediction accuracy compared with the existing methods. Further, we trained a prediction model with animal data to predict animal miRNAs. The model also achieves higher prediction performance. It further confirms the efficiency of our miRNA prediction method.
Conclusions: The superior performance of the proposed prediction model can be attributed to the extracted features of plant miRNAs and miRNA*s, the selected training dataset, and the carefully selected features. The web service of MaturePred, the training datasets, the testing datasets, and the selected features are freely available at http://nclab.hit.edu.cn/maturepred/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217989 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027422 | PLOS |
BMC Genomics
January 2025
Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.
View Article and Find Full Text PDFBMC Complement Med Ther
January 2025
Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico.
Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman.
The (citrus) plant produces various phytohormones due to the significant involvement of the carotenoid cleavage oxygenase () gene family in its growth and development. genes can be divided into two main categories: (9-cis-epoxy carotenoid dioxygenase), responsible for abscisic acid (ABA) production, and (carotenoid cleavage dioxygenase), involved in pigment and strigolactone formation. To better understand the roles and positions of gene members in relation to these hormones, researchers analyzed the clementine genome.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
Potassium, an essential inorganic cation, is crucial for the growth of oil crops like L. Given the scarcity of potassium in soil, enhancing rapeseed's potassium utilization efficiency is of significant importance. This study identified 376 potassium utilization genes in the genome of ZS11 through homologous retrieval, encompassing 7 functional and 12 regulatory gene families.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!