Background: The segmentation of the cortical interface between grey and white matter in magnetic resonance images (MRI) is highly challenging during the first post-natal year. First, the heterogeneous brain maturation creates important intensity fluctuations across regions. Second, the cortical ribbon is highly folded creating complex shapes. Finally, the low tissue contrast and partial volume effects hamper cortex edge detection in parts of the brain.

Methods And Findings: We present an atlas-free method for segmenting the grey-white matter interface of infant brains in T2-weighted (T2w) images. We used a broad characterization of tissue using features based not only on local contrast but also on geometric properties. Furthermore, inaccuracies in localization were reduced by the convergence of two evolving surfaces located on each side of the inner cortical surface. Our method has been applied to eleven brains of one- to four-month-old infants. Both quantitative validations against manual segmentations and sulcal landmarks demonstrated good performance for infants younger than two months old. Inaccuracies in surface reconstruction increased with age in specific brain regions where the tissue contrast decreased with maturation, such as in the central region.

Conclusions: We presented a new segmentation method which achieved good to very good performance at the grey-white matter interface depending on the infant age. This method should reduce manual intervention and could be applied to pathological brains since it does not require any brain atlas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217936PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027128PLOS

Publication Analysis

Top Keywords

surface reconstruction
8
tissue contrast
8
grey-white matter
8
matter interface
8
good performance
8
atlas-free surface
4
cortical
4
reconstruction cortical
4
cortical grey-white
4
interface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!