Mucosal delivery of ACNPV baculovirus driving expression of the Gal-lectin LC3 fragment confers protection against amoebic liver abscess in hamster.

Int J Biol Sci

Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. A.P. 70228, México D.F., México.

Published: May 2012

Mucosal vaccination against amoebiasis using the Gal-lectin of E. histolytica has been proposed as one of the leading strategies for controlling this human disease. However, most mucosal adjuvants used are toxic and the identification of safe delivery systems is necessary. Here, we evaluate the potential of a recombinant Autographa californica baculovirus driving the expression of the LC3 fragment of the Gal-lectin to confer protection against amoebic liver abscess (ALA) in hamsters following oral or nasal immunization. Hamsters immunized by oral route showed complete absence (57.9%) or partial development (21%) of ALA, resulting in some protection in 78.9% of animals when compared with the wild type baculovirus and sham control groups. In contrast, nasal immunization conferred only 21% of protection efficacy. Levels of ALA protection showed lineal correlation with the development of an anti-amoebic cellular immune response evaluated in spleens, but not with the induction of seric IgG anti-amoeba antibodies. These results suggest that baculovirus driving the expression of E. histolytica vaccine candidate antigens is useful for inducing protective cellular and humoral immune responses following oral immunization, and therefore it could be used as a system for mucosal delivery of an anti-amoebic vaccine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221370PMC
http://dx.doi.org/10.7150/ijbs.7.1345DOI Listing

Publication Analysis

Top Keywords

baculovirus driving
12
driving expression
12
mucosal delivery
8
lc3 fragment
8
protection amoebic
8
amoebic liver
8
liver abscess
8
nasal immunization
8
ala protection
8
protection
5

Similar Publications

Antibiotics suppress the expression of antimicrobial peptides and increase sensitivity of Cydia pomonella to granulosis virus.

Sci Total Environ

October 2024

Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China. Electronic address:

Cydia pomonella granulovirus (CpGV) is a highly specific and environmentally friendly pathogenic virus successfully used as a biological insecticide against codling moth larvae. Continuous application of CpGV has led to high levels of resistance in codling moth, Cydia pomonella (C. pomonella).

View Article and Find Full Text PDF

Establishment of human post-vaccination SARS-CoV-2 standard reference sera.

J Immunol Methods

July 2024

Iowa City Veterans Administration Healthcare System, 601 Highway 6, Iowa City, IA 52246, USA; The University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA. Electronic address:

There is a critical need to understand the effectiveness of serum elicited by different SARS-CoV-2 vaccines against SARS-CoV-2 variants. We describe the generation of reference reagents comprised of post-vaccination sera from recipients of different primary vaccines with or without different vaccine booster regimens in order to allow standardized characterization of SARS-CoV-2 neutralization in vitro. We prepared and pooled serum obtained from donors who received a either primary vaccine series alone, or a vaccination strategy that included primary and boosted immunization using available SARS-CoV-2 mRNA vaccines (BNT162b2, Pfizer and mRNA-1273, Moderna), replication-incompetent adenovirus type 26 vaccine (Ad26.

View Article and Find Full Text PDF

Amsacta moorei entomopoxvirus (AMEV) is a poxvirus that can only infect insects. This virus is an attractive research material because it is similar to smallpox virus. AMEV is one of many viruses that encode protein kinases that drive the host's cellular mechanisms, modifying immune responses to it, and regulating viral protein activity.

View Article and Find Full Text PDF

P26 enhances baculovirus gene delivery by modulating the mammalian antiviral response.

Appl Microbiol Biotechnol

October 2023

Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, B1686IGC, Hurlingham, Buenos Aires, Argentina.

Poxins are poxviral proteins that act by degrading 2´3´-cGAMP, a key molecule of cGAS-STING axis that drives and amplifies the antiviral response. Previous works have described some poxin homologous among lepidopteran and baculoviral genes. In particular, P26, a poxin homologous from AcMNPV retains the 2´3´-cGAMP degradation activity in vitro.

View Article and Find Full Text PDF

Host-pathogen dynamics are influenced by many factors that vary locally, but models of disease rarely consider dynamics across spatially heterogeneous environments. In addition, theory predicts that dispersal will influence host-pathogen dynamics of populations that are linked, although this has not been examined empirically in natural systems. We examined the spatial dynamics of a patchy population of tiger moths and its baculovirus pathogen, in which habitat type and weather influence dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!