Interferon regulatory factor 4 (IRF-4) is essential for B and T cell development and immune response regulation, and has both nuclear and cytoplasmic functions. IRF-4 was originally identified as a proto-oncogene resulting from a t(6;14) chromosomal translocation in multiple myeloma and its expression was shown to be essential for multiple myeloma cell survival. However, we have previously shown that IRF-4 functions as a tumor suppressor in the myeloid lineage and in early stages of B cell development. In this study, we found that IRF-4 suppresses BCR/ABL transformation of myeloid cells. To gain insight into the molecular pathways that mediate IRF-4 tumor suppressor function, we performed a structure-function analysis of IRF-4 as a suppressor of BCR/ABL transformation. We found that the DNA binding domain deletion mutant of IRF-4, which is localized only in the cytoplasm, is still able to inhibit BCR/ABL transformation of myeloid cells. IRF-4 also functions as a tumor suppressor in bone marrow cells deficient in MyD88, an IRF-4-interacting protein found in the cytoplasm. However, IRF-4 tumor suppressor activity is lost in IRF association domain (IAD) deletion mutants. These results demonstrate that IRF-4 suppresses BCR/ABL transformation by a novel cytoplasmic function involving its IAD domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265859 | PMC |
http://dx.doi.org/10.1074/jbc.M111.289728 | DOI Listing |
Cancer Chemother Pharmacol
December 2024
Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
Purpose: The treatment landscape for chronic myeloid leukemia (CML) has been revolutionized by the introduction of imatinib, a tyrosine kinase inhibitor, which has transformed the disease from a fatal condition into a manageable chronic illness for a substantial number of patients. Despite this, some individuals do not respond adequately to the treatment, and others may experience disease progression even with continued therapy. This study examined how CYP2C8*3 (G416A; rs11572080) and ABCG2 C421A (rs2231142) single nucleotide polymorphisms (SNPs) affect the plasma trough concentration and therapeutic response of imatinib in Egyptian CML patients.
View Article and Find Full Text PDFRinsho Ketsueki
October 2024
Department of Hematology, National Cancer Center Hospital East.
Mol Cancer
September 2024
Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestrasse 15, 91054, Erlangen, Germany.
Int J Mol Sci
July 2024
Institute of Immunology, Ulm University Medical Center, 89081 Ulm, Germany.
Philadelphia-chromosome-positive acute lymphoblastic leukemia (Ph ALL) is characterized by reciprocal chromosomal translocation between chromosome 9 and 22, leading to the expression of constitutively active oncogenic BCR-ABL1 fusion protein. CXC chemokine receptor 4 (CXCR4) is essential for the survival of BCR-ABL1-transformed mouse pre-B cells, as the deletion of CXCR4 induces death in these cells. To investigate whether CXCR4 inhibition also effectively blocks BCR-ABL1-transformed cell growth in vitro, in this study, we explored an array of peptide-based inhibitors of CXCR4.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
June 2024
Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!